
Stanford MS&E 236 / CS 225: Lecture 17

Beyond discrete optimization: Transformers as algorithms

Ellen Vitercik∗

vitercik@stanford.edu

June 12, 2024

In this class, we will investigate a surprising phenomenon: large neural sequence models
can perform in-context learning [e.g., 1, 3, 7]. We begin by recapping the motivation from
the previous class.

Let Tθ be a trained transformer with weights denoted by θ. A test prompt for this
transformer is defined by a set of “training points” x1, . . . , xN in some set X , a function
f : X → R, and a test point x′ ∈ X . The test prompt has the following form:

P = [(x1, f(x1)) , (x2, f(x2)) , . . . , (xN , f(xN)) , x
′] .

The transformer has already been trained, so we will not retrain it on this test prompt
(hence the adjective “test”). Instead, we want to have already trained Tθ so that for
anya such test prompt P ,

Tθ(P) ≈ f(x′). (1)

Intriguingly, the transformer hasn’t learned a single function f , it seems to have learned
an algorithm. For example, suppose f and f ′ are two linear functions that define two
prompts

P = [(x1, f(x1)) , (x2, f(x2)) , . . . , (xN , f(xN)) ,x
′]

P ′ = [(x1, f
′(x1)) , (x2, f

′(x2)) , . . . , (xN , f
′(xN)) ,x

′] .

It is not that the transformer has learned a single weight vectorw and outputs Tθ(P) =
wTx and Tθ(P

′) = wTx′. Clearly, Equation (1) would not be even close to satisfied
for all prompts. Instead, the transformer seems to have learned a regression algorithm.
Is it ridge regression, ordinary least-squares, or something else?

aThis is too much to ask for, so we will discuss relaxations of this goal in this class.

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1

https://vitercik.github.io/ml4do/assets/notes/lecture16.pdf

1 In-context learning of function classes

We begin with the training procedure for in-context learning. Let F be a class of functions
mapping X to R and DF be a distribution over F . Moreover, let DX be a distribution
over inputs X . To create training prompts, we sample x1, . . . , xk+1 ∼ DX and f ∼ DF . A
training prompt is then defined as

P = [x1, f(x1), x2, f(x2), . . . , xk+1, f(xk+1)] .

We use the notation P i = [x1, f(x1), x2, f(x2), . . . , xi, f(xi), xi+1] to denote the prefix of P
of length 2i+ 1. Given a loss function ℓ(·, ·), we train the transformer Tθ to predict f(xi+1)
from P i, i.e., to minimize the expected loss

E
P

[
1

k + 1

k∑
i=0

ℓ
(
Tθ

(
P i

)
, f (xi+1)

)]
.

2 Experimental setup

In all of the experiments we describe, F will be a class of linear functions F = {f : f(x) =
wTx,w ∈ Rd}, so the test prompts have the form

P =
[
x1,w

Tx1,x2,w
Tx2, . . . ,xk,w

Txk,xk+1

]
.

We can think of
S =

{(
x1,w

Tx1

)
, . . . ,

(
xk,w

Txk

)}
(2)

as the “training set” encoded in the prompt. As such, we can view any regression algorithm
A as a function A(S)(xk+1) where, ideally, A(S)(xk+1) ≈ wTxk+1. To unify notation, we
denote transformer’s output as Tθ(S) (xk+1) as well.

2.1 Within-distribution experiments

We begin by describing within-distribution experiments by Akyürek et al. [1], under which
the in-context examples encoded in the test prompt, x1, . . . ,xk, have the same distribution
as the test point xk+1. In these experiments, x1,x2, . . . ,xk+1,w ∼ N(0, Id) are Normally
distributed with d = 8.

2.1.1 Squared prediction difference

In the first set of experiments, Akyürek et al. [1] compare the transformer’s prediction to
a variety of different standard regression algorithms, including ordinary least squares, ridge
regression, and others. To compare two algorithms A1 and A2, Akyürek et al. [1] use the
squared difference between their predictions,

SquaredPredictionDifference(A1,A2) = E
w,S,xk+1

[
(A1(S) (xk+1)−A2(S) (xk+1))

2] .
The results are in Figure 1. The solid lines compare the transformer to a variety of different

2

Figure 1: Results by Akyürek et al. [1], explained in Section 2.1.1.

regression algorithms, whereas the dotted lines illustrate the mean squared error of the
transformer, OLS, and ridge regression:

E
w,S,xk+1

[(
A(S) (xk+1)−wTxk+1

)2]
.

We can see that the transformer closely tracks the performance of OLS, both in terms of the
squared prediction difference and the mean squared error.

2.1.2 Implicit linear weights difference

Although the transformer does not necessarily learn a linear weights vector, we can still try
to understand the linear function that best fits the transformer’s predictions. To do so, in
addition to sampling the in-context examples S from Equation (2), we will also sample a set
S ′ = {x′

1, . . . ,x
′
m} ∼ N(0, Id) of test points. We define the implicit weights of algorithm A

(which may be the transformer) to be those that minimize the squared difference between
the implicit weights evaluated on the test set and the predictions of A(S) on the test set:

ŵA = argminŵ

m∑
i=1

(
ŵTx′

i −A(S) (x′
i)
)2

.

To compare two algorithms, we compare their implicit linear weights:

ImplicitLinearWeightsDifference(A1,A2) = E
w,S,S′

[
∥ŵA1 − ŵA2∥

2
2

]
.

(If A1 or A2 is a standard regression algorithm that returns linear weights, we use those
instead of ŵA1 or ŵA2 in the definition above.) The results are illustrated in Figure 2. In
this case, the transformer’s implicit weights closely match OLS’s.

2.2 Algorithm selection on noisy data

When noise is added to the training set, the best choice of a regression algorithm depends on
the noise’s magnitude. A statistician would need to make this choice based on trial and error.

3

Figure 2: Results by Akyürek et al. [1], explained in Section 2.1.2. The black line is the mean
squared error of OLS.

(a) Noise level σ = 0.1. (b) Noise level σ = 0.5.

Figure 3: Results by Bai et al. [3], explained in Section 2.2.

Bai et al. [3] show that transformers seamlessly adapt to the noise level in the in-context
training set, seeming to perform algorithm selection on the fly.

In the experiments by Bai et al. [3], w ∼ N(0, Id/d) and x1, . . . ,xk+1 ∼ N(0, Id) for
d = 20. We add noise to the in-context training set, defining it as

S =
{(

x1,w
Tx1 + σϵ1

)
, . . . ,

(
xk,w

Txk + σϵk
)}

with ϵi ∼ N(0, 1) and σ ≥ 0. In this setting, ridge regression with regularization parameter

λ =
dσ2

k
(3)

is known to return the minimum Bayes risk predictor. That is, its predictions are roughly
equal to E[y | S,xk+1].

The results by Bai et al. [3] are in Figure 3. In Figure 3a, σ = 0.1 and in Figure 3b,
σ = 0.5. In both figures, the orange lines are the mean squared error

SquaredLoss(A) = E
w,S,xk+1

[(
A(S)(xk+1)−wTxk+1

)2]

4

of a transformer trained on training prompts with σ = 0.1. Meanwhile, the green lines are
the mean squared error of a transformer trained with σ = 0.5. The black dotted lines are the
mean squared error of ridge regression with the optimal choice of λ for σ = 0.1 according to
Equation (3) (as a function of k). We can see that the orange lines (the transformer trained
with σ = 0.1) closely match the dotted lines. Meanwhile, the dashed lines are the mean
squared error of ridge regression with the optimal choice of λ for σ = 0.5. In this case, the
green lines (the transformer trained with σ = 0.5) closely match the dashed lines. Finally,
the blue lines show the mean squared error of a transformer trained with a mixture of noise
levels. In this case, the transformer is able to (nearly) match the better of all baselines.
Intriguingly, the transformer acts as if it is performing algorithm selection.

2.3 Does the transformer encode meaningful intermediate quantities?

Finally, we ask if it is possible to tell whether the transformer is encoding meaningful quanti-
ties in its hidden embeddings. What could these meaningful quantities be? Examples might
include the final weight vector wOLS of OLS, or XTy, where

X =

 | |
x1 · · · xk

| |

 and y =

wTx1
...

wTxk

 .

We call these two quantities probes v ∈ Rd, a la Alain and Bengio [2]. Let H(ℓ) ∈
R(sequence length)×D be the transformer’s output at layer ℓ. Our goal is to answer the question:
is v “encoded” in H(ℓ)? Said another way, is v some simple function of H(ℓ)?

To answer this question, we define a probing model v̂ = f(sTH(ℓ)) where s ∈ R(seq. length)

is a learned weight vector (with s ≥ 0 and ∥s∥1 = 1) and f : RD → Rd is a learned function.
Akyürek et al. [1] perform two experiments: one where f is a linear function (which would
correspond to as simple an encoding as we could hope for) and another where f is a 2-layer
multi-layer perceptron (MLP). We then train s and f to minimize the mean squared error

∥v − v̂∥22 . (4)

We train a different s and f for each sequence length and layer. Intuitively, if this error is
small for some layer ℓ, then v is (approximately) a simple function of H(ℓ).

The results of probing experiments by Akyürek et al. [1] are in Figure 4. In these
experiments, x1,x2, . . . ,xk+1,w ∼ N(0, Id) with d = 8. We can see that the test mean
squared error (Equation (4)) of the linear probe is worse in both figures compared to the
MLP probe, indicating that the probes are more likely to be encoded by a non-linear than
a linear function. Around the seventh layer, XTy (or something like it) appears to be
computed first. Meanwhile, wOLS seems to be computed around the twelfth layer.

3 Decision trees

Finally, transformers seem able to in-context learn non-linear functions, such as decision
trees [7]. To create a prompt, Garg et al. [7] draw x1, . . . ,xk+1 ∼ N(0, Id) with d = 20 and
label each point x1, . . . ,xk by a full binary, depth-four decision tree, denoted f . Each node
of the decision tree is defined by an inequality x[j] ≤ θ, where j ∼ Unif({1, 2, . . . , 20}) and

5

(a) Probe for XTy.

(b) Probe for wOLS .

Figure 4: Results by Akyürek et al. [1], explained in Section 2.3.

each θ ∼ N(0, 1). The values associated with the leaf nodes are drawn from N(0, 1). The
results by Garg et al. [7] are in Figure 5. In this figure, the transformer’s performance is
better than greedy tree learning and boosting (via XGBoost [6]). Garg et al. [7] include the
following intriguing remark: “in general, we do not have a good understanding of the space
of efficient algorithms for learning decision trees, and the conditions under which known
heuristics work [4, 5]. At the same time, we found that Transformers can be trained to
directly discover such an algorithm for the prompt distribution we considered. This suggests
an intriguing possibility where we might be able to reverse engineer the algorithm encoded
by a Transformer to obtain new sample efficient algorithms for existing learning problems.”

References

[1] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What
learning algorithm is in-context learning? investigations with linear models. In Proceed-
ings of the International Conference on Learning Representations (ICLR), 2023.

[2] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear
classifier probes. arXiv preprint arXiv:1610.01644, 2016.

[3] Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statis-
ticians: Provable in-context learning with in-context algorithm selection. In Conference
on Neural Information Processing Systems (NeurIPS), 2023.

[4] Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Decision tree heuristics can

6

Figure 5: Results by Garg et al. [7], explained in Section 3.

fail, even in the smoothed setting. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM), 2021.

[5] Alon Brutzkus, Amit Daniely, and Eran Malach. Id3 learns juntas for smoothed product
distributions. In Conference on Learning Theory (COLT), 2020.

[6] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Inter-
national Conference on Knowledge Discovery and Data Mining (KDD), 2016.

[7] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can trans-
formers learn in-context? a case study of simple function classes. In Conference on Neural
Information Processing Systems (NeurIPS), 2022.

7

	In-context learning of function classes
	Experimental setup
	Within-distribution experiments
	Squared prediction difference
	Implicit linear weights difference

	Algorithm selection on noisy data
	Does the transformer encode meaningful intermediate quantities?

	Decision trees

