
Stanford MS&E 236 / CS 225: Lecture 2

The traveling salesman problem and recurrent neural networks

Ellen Vitercik∗

April 17, 2024

In these notes, we will begin with an overview of the canonical traveling salesman problem
(TSP) and then discuss tools that we will use to integrate machine learning into solving TSP.

1 Traveling salesman problem

In TSP, the input is a network with n nodes representing a map with n cities. We denote the
distance from node i to node j as ci,j ≥ 0. The goal in TSP is to find the shortest distance
tour passing through each node exactly once. We can represent a tour as a permutation
π : [n] → [n], where π(1) is the first node we visit, π(2) is the second node we visit, and so
on. Thus, our goal is to find the permutation that minimizes

cπ(n),π(1) +
n−1∑
i=1

cπ(i),π(i+1).

TSP is one of the most famous NP-hard problems1 and has served as a “challenge”
problem in both theory and practice for over 70 years. Due to this problem’s difficulty, many
polynomial-time, efficient heuristics have been developed for this problem. For example,
Algorithm 1 is pseudo-code for the nearest insertion heuristic. If, in Step 3, we chose the

Algorithm 1 Nearest insertion TSP heuristic.

Input: n cities with distances ci,j between each pair (i, j)
1: Start with subtour that only consists of the first city
2: while the subtour is not a complete tour do
3: Among all cities not in the subtour, choose the one that is closest to any city in the subtour
4: Insert it into the subtour at whatever position causes the smallest increase in tour length

Output: Return the complete tour of all n cities

city that is farthest from any city in the subtour, we would have the farthest insertion
heuristic. See this blogpost for animations of these heuristics and others.

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1In theory, this means that we cannot find an optimal tour much faster than trying out all (n− 1)! tours. To see
why there are (n− 1)! tours, suppose, without loss of generality, that we start at node 1. There are n− 1 choices for
the second node we visit, n− 2 choices for the node we visit after that, and so on. Thus, in total, there are (n− 1)!
total tours.

1

https://stemlounge.com/animated-algorithms-for-the-traveling-salesman-problem/


Figure 1: Encoder RNN

As we will see in later classes, these hand-designed heuristics can work well on certain
TSP instances. However, they are based on simple intuition, and it is reasonable to hope
that with an extensive search, we could find stronger, efficient heuristics that are based on
more complex calculations of the input network. Our goal in the next few classes will be to
use machine learning to discover heuristics that are optimized for the particular type of TSP
instances they are trained on (corresponding to, for example, particular types of robotics
tasks, or the specific road networks that a shipping company navigates day after day).

Our initial investigation into using ML for TSP will be based on papers by Vinyals et al.
[2] and Bello et al. [1], who used sequence-to-sequence models for this task. These early pa-
pers illustrated the potential benefits of using deep learning for combinatorial optimization.
In future classes, we will expand on these building blocks as we discuss more modern archi-
tectures, such as transformers. Moreover, we will compare and contrast sequence-to-sequence
models with other architectures, such as graph neural networks.

2 Sequence-to-sequence recurrent neural networks (RNNs)

Sequence-to-sequence models2 have primarily been developed for natural language process-
ing, but we will see their utility for other tasks in the next few classes. The input is a
sequence of vectors x1, . . . ,xn ∈ Rd0 which could be, for example, word embeddings or cities
on a map with d0 = 2. The output is a sequence of vectors y1, . . . ,ym ∈ Rd1 . This output
could correspond to a translation of the original sequence into a foreign language or, as we
will see, a tour of the n input cities.

The first step of a sequence-to-sequence model is to feed the input into an encoder re-
current neural network (RNN), which is illustrated in Figure 1. The encoder RNN is based
on an initialization vector h0 ∈ Rdh , which is a trainable parameter. Using h0 and x1, we
compute the hidden state h1 ∈ Rdh , which is the output of a simple, single-layer neural
network

h1 = ϕ
(
W (hh)h0 +W (hx)x1

)
,

where ϕ is a non-linearity, andW (hh) ∈ Rdh×dh ,W (hx) ∈ Rdh×d0 are trainable weight matrices.
In a similar fashion, we compute the next hidden state

h2 = ϕ
(
W (hh)h1 +W (hx)x2

)
,

and so on. In general, the tth hidden state is computed as

ht = ϕ(W (hh)ht−1 +W (hx)xt).

2This section closely follows Stanford’s CS244N notes on (1) RNNs and (2) sequence-to-sequence models and
attention mechanisms.

2

https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes05-LM_RNN.pdf
https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes06-NMT_seq2seq_attention.pdf
https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes06-NMT_seq2seq_attention.pdf


Figure 2: Decoder RNN

After all inputs have been processed, we have a context vector.
Given the context vector, we compute the outputs y1, . . . ,ym in a similar fashion, as

illustrated in Figure 2. We will denote the initial context vector as s1, and the output y1 is
computed as

y1 = softmax(W (sy)s1),

where W (sy) is a trainable weight matrix. We then compute the next hidden state

s2 = ϕ(W (ss)s1),

where W (ss) is a trainable weight matrix and ϕ is a non-linearity. Similarly, the tth output
is defined as

yt = softmax(W (sy)st)

and the tth hidden state is defined as

st = ϕ(W (ss)st−1).

With this, we have the basic encoder-decoder RNN.
Crucially, this architecture can transform sequences of arbitrary length to sequences of

arbitrary length since the weight matrices are shared across all indices. However, informa-
tion from early in the sequence may be lost later in the sequence and RNNs suffer from
exploding and vanishing gradients (see, for example, these lecture notes from Stanford’s
CS244N course). These issues, among others, motivate long-short-term-memories (LSTMs),
which we will cover next. Moreover, in the context of TSP, the output will almost certainly
not form a tour of the n cities, which motivates pointer networks. We will discuss pointer
networks next class.

2.1 Long-short-term-memories (LSTMs)

The key idea motivating LSTMs is to introduce a cell state (in addition to the hidden states
ht and st), which can be thought of as a conveyor belt that runs down the entire chain
of computations. It is easy for information to flow along this conveyor belt with minimal
change. A handful of gates will regulate how much information is added to or removed
from the cell state. For example, if the cell state includes the gender of a previous subject,
we should, intuitively, forget that gender if we encounter a new subject. These gates are
illustrated in Figure 3 and can be interpreted as follows:

1. Generate new memory: This step works much like the vanilla RNNs we saw above.
We combine the prior hidden state ht−1 and the input xt to generate a new memory:

c̃t = tanh
(
U (c)ht−1 +W (c)xt

)
.

3

https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes05-LM_RNN.pdf


Figure 3: LSTM

For all gates, the matrices U and W (with some superscript) are trainable parameters.

2. Input gate: In the step above, we do not check if the new memory is “important”
before we generate it. The input gate determines whether the input xt is important
and, thus, whether information about it is worth preserving, as encoded by the vector

it = σ
(
U (i)ht−1 +W (i)xt

)
,

where σ is a sigmoid function. Intuitively, if it is close to zero, the memory is not worth
preserving.

3. Forget gate: This gate is similar to the input gate, except that it is meant to determine
whether the previous cell state ct−1 is worth preserving. Its computation is

ft = σ
(
U (f)ht−1 +W (f)xt

)
.

4



4. Generate new cell state: The new cell state is generated using the advice of the input
and forget gates. In particular, the new cell state is

ct = ft ◦ ct−1 + it ◦ c̃t.

5. Output/exposure gate: This gate is meant to delineate the hidden state ht from the
new cell state ct. The hidden state ht is used as input to every LSTM gate, and the
output/exposure gate determines which parts of the new cell state ct should be saved
in the hidden state as encoded by the vector

ot = σ
(
U (o)ht−1 +W (o)xt

)
.

Finally, the hidden state is defined as

ht = ot ◦ tanh(ct).

2.2 Attention

The last concept we will briefly discuss today is attention, which will come up again in
later classes on. Here, we note that the decoder RNN only uses the single context vector to
produce outputs. However, two outputs yt and yt′ will likely depend on the input in varying
ways. Under an attention mechanism, the output yt will depend on the decoder hidden state
st as well as the entire sequence of encoder hidden states h1, . . . ,hn. We will see an example
of this in the next class.

3 Next time

Next time, we will discuss pointer networks, which use LSTMs to predict permutations, such
as the order of nodes in a TSP tour.

References

[1] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neu-
ral combinatorial optimization with reinforcement learning. In Workshop track of the
International Conference on Learning Representations (ICLR), 2017.

[2] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Conference on
Neural Information Processing Systems (NeurIPS), 2015.

5


	Traveling salesman problem
	Sequence-to-sequence recurrent neural networks (RNNs)
	Long-short-term-memories (LSTMs)
	Attention

	Next time

