
Stanford MS&E 236 / CS 225: Lecture 3

Pointer networks for the traveling salesman problem

Ellen Vitercik∗

April 17, 2024

This class introduces pointer networks [2], which use LSTMs to predict permutations,
such as the order of a set of cities in a tour. We will also see how to use policy gradients, i.e,
the classic REINFORCE algorithm [3] to train pointer networks to (approximately) solve
the traveling salesman problem (TSP). The focus of this lecture is TSP, but the ideas apply
to other combinatorial problems as well. For example, Bello et al. [1] use this framework to
compute high-value solutions to the knapsack problem.

1 Pointer networks

The input to a pointer network is a set X = {x1, . . . ,xn} ⊂ Rd0 . In the context of the
traveling salesman problem, this input could encode n cities on a map with d0 = 2 (or d0 > 2
if embedded in a higher-dimensional space). The output is a distribution over permutations
π : [n]→ [n] (a pointer network’s output could be more general than this, but we will stick
to permutations for this class). A permutation π corresponds to a tour of these n cities that
visits city π(1) first, city π(2) second, and so on. We use the notation P[π | X] to denote
the probability the pointer network places on permutation π given the input X.

In more detail, a pointer network uses long-short-term-memories (LSTMs) to compute
individual conditional probabilities P[π(i) | π(< i), X], which is the probability distribution
over the ith city in the tour, conditioned on the first i− 1 cities in the tour, which we denote
as π(< i). To obtain the joint distribution P[π | X], we use the chain rule:

P[π | X] =
n∏

i=1

P[π(i) | π(< i), X].

We will begin by carefully working through how we compute P[π(1) | X]. (Although
choosing the first city in the tour is somewhat irrelevant, it will help us build intuition for the
full pointer network.) First, the input is encoded using an encoder LSTM, which computes
hidden states h1,h2, . . . ,hn (where the initial hidden state h0 is a trainable parameter). The
input to the first decoder LSTM is the hidden state hn together with a trainable parameter
g. This LSTM returns the first decoder hidden state s1. To compute P[π(1) | X], the
pointer network defines a vector u ∈ Rn where ut = a(ht, s1) is the output of an attention
function a. The value a(ht, s1) ∈ R is meant to capture how relevant the tth input is

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1

(a) The blue arrow indicates that city 2 is chosen as the first city of the tour.

(b) City 1 is chosen as the second city of the tour. The red line indicates that it is not possible to choose
city 2 again.

(c) The full pointer network.

Figure 1: Illustration of a pointer network that selects the tour 2→ 1→ 3→ 4→ 2.

to the first output. For example, in a seminal paper, Bello et al. [1] define a(h, s) =
v⊤ · tanh (W1h+W2s) , where v,W1, and W2 are trainable parameters. Finally, we define
P[π(1) | X] = softmax(u) ∈ [0, 1]n, and we sample a city from this distribution, as illustrated
in Figure 1a. If city j was sampled as the first city in the tour, the pointer network uses xj

as the input to the next decoder LSTM, which computes the next hidden state s2.
To compute P[π(2) | π(1), X], the pointer network next defines the vector u ∈ [0, 1]n as

follows: for all t ∈ [n],

ut =

{
a(ht, s2) if t ̸= π(1)

−∞ else.

We again define P[π(2) | π(1), X] = softmax(u) ∈ [0, 1]n, and we sample a city from this
distribution, as illustrated in Figure 1b. By setting ut = −∞ if t = π(1), we ensure that we
do not sample the same city twice. Once again, if city j was sampled as the second city, the
pointer network uses xj as the input to the next decoder LSTM, which computes the next
hidden state s3.

2

More generally, to compute P[π(i) | π(< i), X], the pointer network defines the vector u
as follows: for all t ∈ [n],

ut =

{
a(ht, si) if t hasn’t been visited, i.e., t ̸= π(j) for j < i

−∞ else.

As before, P[π(i) | π(< i), X] = softmax(u). The full pointer network is illustrated in
Figure 1c. Check out the paper by Bello et al. [1] for additional bells and whistles that can
further improve the performance of pointer networks.

There are several key insights:

1. By sampling first from P[π(1) | X], then P[π(2) | π(< 1), X], and so on, we are
guaranteed to obtain a valid tour.

2. The pointer network can be tested on instances of a different size than those it was
trained on. Unlike vanilla LSTMs, we are not restricted to outputs from vocabularies
of a fixed size.

2 Training pointer networks for TSP

Next, we will discuss training pointer networks for TSP. Given an input set of cities X =
{x1, . . . ,xn} ⊂ R2, permutation π : [n]→ [n], the length of the tour defined by π is

L(π | X) =
n−1∑
i=1

∥∥xπ(i) − xπ(i+1)

∥∥
2
+
∥∥xπ(n) − xπ(1)

∥∥
2
.

We will abstract away the specifics of the pointer network and simply denote its parameters
by θ. We use pθ(π | X) to denote the probability the pointer network places on the permu-
tation π. The pointer network’s loss given X is the expected length of the tour it outputs,
which we denote as

J(θ | X) = E
π∼pθ(·|X)

[L(π | X)].

We will train and test on TSP instances sampled from a distribution D, where pD(X) is
the probability assigned to instance X. For simplicity in these notes, we assume that D has
finite support, but this is not a necessary assumption.

With this notation in place, we can state our overall goal, which is to find a parameter
vector θ that minimizes the overall loss

J(θ) = E
X∼D

[J(θ | X)].

Our method for achieving this goal is gradient descent: θ ← θ − α∇θJ(θ). We will use
policy gradient (i.e., the REINFORCE algorithm [3]) to estimate ∇θJ(θ). To explain the
logic behind this algorithm, we first write ∇θJ(θ) in terms of ∇θJ(θ | X):

∇θJ(θ) = ∇θ

(∑
X

J(θ | s)pD(X)

)
=
∑
X

∇θ (J(θ | X)) pD(X) = E
X∼D

[∇θJ(θ | X)].

3

Algorithm 1 Vanilla REINFORCE algorithm for TSP

Input: Number of training steps T , batch size B, learning rate α
1: for t = 1, . . . , T do
2: Draw B samples: Xi ∼ D for i ∈ {1, . . . , B}
3: Sample a tour for each instance: πi ∼ pθ(· | Xi) for i ∈ {1, . . . , B}
4: Estimate the gradient of J(θ) as gθ ← 1

B

∑B
i=1 L(πi | Xi)∇θ log pθ(πi | Xi)

5: Gradient step θ ← θ − αgθ

Output: Parameters θ

Next, given an instance X,

∇θJ(θ | X) = ∇θ E
π∼pθ(·|X)

[L(π | X)] (by definition of J(θ | X)

= ∇θ

(∑
π

L(π | X)pθ(π | X)

)
(expanding the expectation)

=
∑
π

∇θ (L(π | X)pθ(π | X)) (moving the gradient inside the sum)

=
∑
π

L(π | X)∇θ (pθ(π | X)) . (L(π | X) doesn’t depend on θ)

We will next employ a useful fact from calculus:

∇θ log pθ(π | X) =
∇θpθ(π | X)

pθ(π | X)
.

This implies that

∇θJ(θ) =
∑
π

L(π | X)∇θ (log pθ(π | X)) pθ(π | X) = E
π∼pθ(·|X)

[L(π | X)∇θ (log pθ(π | X))] .

The takeaway from this derivation is that to compute ∇θJ(θ | X), only need to compute
gradients of the (logarithm of the) policy, log pθ(π | X). This leads naturally to the REIN-
FORCE algorithm, Algorithm 1, which runs gradient descent using Monte Carlo estimates
of ∇θ (log pθ(π | X)).

REINFORCE with a baseline

A typical issue with the vanilla REINFORCE algorithm is that if L(π | X) is often large,
the gradient estimates gθ can have high variance. A common variance-reduction strategy is
to train a baseline b(X) to estimate the expected loss Eπ∼pθ(·|X) [L(π | X)]. This baseline is
included when estimating the gradient in Step 4 of Algorithm 1 by instead computing the
estimate

gθ ←
1

B

B∑
i=1

(L(πi | Xi)− b(Xi))∇θ log pθ(πi | Xi).

See the paper by Bello et al. [1] and Chapter 17 of the CS 229 lecture notes for more details.

4

https://cs229.stanford.edu/main_notes.pdf

3 Next time

Next time, we will analyze the performance of this ML approach to TSP!

References

[1] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neu-
ral combinatorial optimization with reinforcement learning. In Workshop track of the
International Conference on Learning Representations (ICLR), 2017.

[2] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Conference on
Neural Information Processing Systems (NeurIPS), 2015.

[3] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8:229–256, 1992.

5

	Pointer networks
	Training pointer networks for TSP
	Next time

