
Stanford MS&E 236 / CS 225: Lecture 5

Graphs and graph algorithms

Ellen Vitercik∗

April 24, 2024

Many discrete optimization problems can be formulated in terms of graphs. In this
lecture, we will go over basic graph notation and jargon to make sure we’re on the same
page. We will also explore a common algorithmic paradigm for solving graph problems:
greedy algorithms.

1 Graphs

Abstractly, a graph consists of a set of objects called nodes, which are connected by edges.
The nodes and edges may have data associated with them describing some real-world system,
as illustrated by the following examples:

Molecules. To represent a molecule, a graph’s nodes represent atoms with features describ-
ing the atom’s type (e.g., carbon, nitrogen, hydrogen, . . .). The edges represent bonds,
with features describing the bond type (e.g., single bond, double bond, . . .).

Rail networks. In this case, nodes are cities, and edges are connections with features de-
scribing the journey time between them.

Social networks. In a social network, the nodes represent people, and the edges represent
friendships.

We use G = (V,E) to denote a graph, where V = {1, . . . , n} is a set of nodes/vertices
and E is a set of edges/links. The edge between i, j ∈ V is denoted (i, j). The neighborhood
of the node i ∈ V is the set of nodes it is connected to by an edge, denoted as

N(i) = {j : (i, j) ∈ E} .

The cardinality of this set, |N(i)|, is called the degree of vertex i.
In the next sections, we will cover several classic graph problems together with simple

greedy algorithms that return (approximate) solutions.

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1

Algorithm 1 MVC 2-approximation algorithm

Input: Graph G = (V,E)
1: Initialize the vertex cover S ← ∅
2: while E ̸= ∅ do
3: Choose the edge (i, j) ∈ E with the largest degree sum, i.e., which maximizes |N(i)|+ |N(j)|
4: Add i and j to the vertex cover: S ← S ∪ {i, j}
5: Remove all edges incident to i and j from E

Output: The vertex cover S

(a) Graph with degree sums (b) First pair added (c) Second pair added

(d) Final pair added (e) Minimum vertex cover

Figure 1: Illustration of Algorithm 1 for MVC. The blue nodes form the vertex cover, and the
dotted edges are those that have been deleted from the graph.

2 Minimum vertex cover

We begin with the minimum vertex cover (MVC) problem. A vertex cover is defined as
follows.

Definition 2.1 (Vertex cover). A vertex cover of a graph G = (V,E) is a set S ⊆ V such
that every edge (i, j) ∈ E is incident to a vertex in S, i.e., i ∈ S, j ∈ S, or both.

In the MVC problem, the goal is to find a vertex cover S with minimum cardinality |S|.
An example application is installing cameras in corners (represented by the nodes) covering
all hallways (represented by the edges) on a floor. Finding the minimum vertex cover is
NP-hard (meaning, informally, that there is likely not an algorithm that solves this problem
much faster than a brute force algorithm that checks if all 2|V | sets of vertices are vertex
covers). There are, however, efficient algorithms that return approximate solutions, such
as Algorithm 1, which is illustrated by Figure 1.

Algorithm 1 returns a vertex cover because an edge is only deleted if it is incident to a
newly-added vertex in S, and the algorithm terminates when all edges have been deleted.
In the following theorem, we prove that Algorihtm 1 is a 2-approximation algorithm.

Theorem 2.2. Let S∗ be the minimum vertex cover and S be the output of Algorithm 1.
Then |S| ≤ 2|S∗|.

Proof. Let E ′ be the set of edges the algorithm picked in Step 3. Since S∗ is a vertex cover,
it must include at least one node incident to each edge in E ′. By construction, no two edges

2

Algorithm 2 MIS 1
1+∆ -approximation algorithm

Input: Graph G = (V,E)
1: Initialize the independent set S ← ∅
2: while V ̸= ∅ do
3: Choose the vertex v ∈ V with the minimum degree |N(v)|
4: Add v to the independent set: S ← S ∪ {v}
5: Remove v and all of its neighbors from V

Output: The independent set S

(a) Original graph (b) First vertex (c) Second vertex (d) Third and fourth

Figure 2: Illustration of Algorithm 2 for MIS. In the algorithm’s first round, we add the bottom-left
blue vertex in Figure 2b to the independent set and delete its neighbors from teh graph, illustrated
in grey. In the next round, we add the second blue vertex in Figure 2c to the independent set and
delete its remaining neighbor. The dotted edges are those that have been deleted from the graph.
The arrows are explained in the proof of Theorem 3.2.

in E ′ share an endpoint, because once an edge is chosen, all of the edges incident to its
endpoints are deleted. This means that no two edges are incident to the same vertex in S∗,
which means that |S∗| ≤ |E ′|. Therefore, |S| = 2|E ′| ≤ 2|S∗|.

3 Maximum independent set

Our next example of a famous graph problem is the maximum independent set (MIS) prob-
lem, which is closely related to MVC. An independent set is defined as follows.

Definition 3.1 (Independent set). Given a graph G = (V,E), an independent set is a set
S ⊆ V of vertices such that no vertices in S are connected by an edge.

In the MIS problem, the goal is to find an independent set S with largest cardinality |S|.
MIS is also NP-hard, but there are approximation algorithms. Letting ∆ = maxi∈V |N(i)|
denote the graph’s maximum degree, Algorithm 2 is a 1

1+∆
-approximation algorithm. Algo-

rithm 2 is illustrated by Figure 2.
Algorithm 2 returns an independent set S because once a node is added to S, its neighbors

are deleted from the graph. The following theorem proves that Algorithm 2 is a 1
1+∆

-
approximation algorithm.

Theorem 3.2. Let V ∗ be the maximum independent set and S be the output of Algorithm 2.

Then |S| ≥ |V |
∆+1
≥ |V ∗|

∆+1
.

Proof. We will begin by bounding the size of the set |V \ S|. A node u is in V \ S if and
only if it’s removed as a neighbor of some node v ∈ S, and it’s removed when v is added to

3

Algorithm 3 Max-cut 1
2 -approximation algorithm

Input: Graph G = (V,E)
1: Begin with an arbitrary initial cut S ⊆ V
2: For each vertex i ∈ V , let wi be the cut’s weight if you switched the side i was on
3: If wi ≤ w(S) for all i, terminate and return S
4: Otherwise, let i∗ = argmax{wi}. Switch the side of the cut that i∗ is on and return to Step 2

Output: The independent set S

(a) Original graph (b) First swap (c) Second swap

Figure 3: Illustration of Algorithm 3 maximum cut. The dotted edges cross from one side of the
cut to the other.

S. We will “charge” u to v, as illustrated in Figure 2. For example, when we add the blue
node in the bottom left-hand corner of Figure 2b, we remove its three neighbors, illustrated
in grey. The arrows illustrate that we “charge” each of these grey nodes to the blue node.
Similarly, in Figure 2c, when we added the next blue node to the independent set, we remove
its last remaining neighbor, and the arrow indicates that we “charge” the grey node to the
blue node.

Each node v ∈ S can be charged at most ∆ times since it has at most ∆ neighbors. This
implies that |V \ S| ≤ ∆|S|. Therefore, |V | = |V \ S|+ |S| ≤ |S|(1 + ∆), which implies the
theorem statement.

4 Maximum cut

The last graph problem we will explore today is maximum cut. One of the most famous
approximation algorithms—the Goemans-Williamson algorithm [1]—was developed for max-
cut. Today, we will analyze a simpler approximation algorithm.

First, a cut in a graph G = (V,E) is a subset of its vertices S ⊆ V . The cut’s weight
w(S) is the number of edges that cross between S and V \ S. The goal is to find a cut with
maximum weight.

Algorithm 3, which is illustrated in Figure 3, is a 1
2
-approximation algorithm for max-cut.

Algorithm 3 terminates in at most |V | rounds because in each round, the cut weight increases
by at least 1 (or else the algorithm terminates), and w(S) ∈ [0, |V |]. Next, we prove that it
is a 1

2
-approximation algorithm.

Theorem 4.1. Let S∗ be the maximum weight cut and S be the cut that Algorithm 3 returns.
Then w(S) ≥ 1

2
w(S∗).

Proof. First, we claim that w(S) ≥ |E|
2
. To see why, for any vertex i ∈ S, some of its

neighbors in N(i) are in S and some of its neighbors are in V \ S. It must be that more
of its neighbors are in V \ S than S, or else we could switch i to V \ S and improve the

4

cut’s weight. Therefore, the number of edges incident to i that cross the cut is at least |N(i)|
2

.
Moreover,

w(S) ≥ 1

2

∑
i∈V

(# of i’s incident edges that cross the cut),

where the 1
2
factor keeps us from overcounting. Therefore,

w(S) ≥ 1

2

∑
i∈V

|N(i)|
2
≥ 1

4

∑
i∈V

|N(i)| = 1

4
· 2|E|.

Meanwhile, w(S∗) ≤ |E|, so w(S) ≥ |E|
2
≥ 1

2
w(S∗).

5 Greedy algorithms

Algorithm 1, 2, and 3 are all greedy algorithms: in an iterative fashion, they “greedily”
choose a node to add/remove from the solution which maximizes or minimizes some score.
For example:

MVC. Algorithm 1 chooses the edge (i, j) with maximum degree sum |N(i)| + N(j)| and
adds its endpoints to the vertex cover.

MIS. Algorithm 2 chooses the node with minimum degree |N(i)| and adds it to the inde-
pendent set.

Max-cut. Algorithm 3 swaps the node that leads to the larges improvement of the cut
weight.

In this lecture, we saw that these intuitive, simple, hand-designed rules yield decent
approximation algorithms. In the next few classes, we will see if we can use ML to learn an
even better scoring rule (perhaps not in the worst case, but for non-worst-case families of
graphs).

References

[1] Michel X Goemans and David P Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of the
ACM (JACM), 42(6):1115–1145, 1995.

5

	Graphs
	Minimum vertex cover
	Maximum independent set
	Maximum cut
	Greedy algorithms

