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In the last class, we reviewed the basics of graphs. Many discrete optimization problems
can be formulated as graph problems. We also saw a handful of famous (“greedy”) graph
problems for NP-hard problems, including minimum vertex cover, maximum independent set,
and maximum cut. In the next two classes, we will see how we can learn better algorithms
for these problems using machine learning (perhaps not in the worst case, but for non-worst-
case families of graphs). To do so, we will use graph neural networks (GNNs), which will be
the focus of this class. Next class, we will focus on how to train GNNs using reinforcement
learning (RL), so today, we will also cover the basic building blocks of RL: Markov decision
processes.

1 Graph notation

We use G = (V,E) to denote a graph, where V = {1, . . . , n} is a set of nodes/vertices and
E is a set of edges/links. The edge between i, j ∈ V is denoted (i, j). The neighborhood of
the node i ∈ V is the set of nodes it is connected to by an edge, denoted as

N(i) = {j : (i, j) ∈ E} .

2 Graph neural networks

Given a graph or distribution over graphs, there are many different predicted tasks you may
wish to perform, which we can coarsely categorize into node, edge, and graph prediction,
exemplified as follows.

Node prediction. For example, given a graph that represents a social network, we may
wish to predict the political affiliation of each of its users.

Edge prediction. In the same example about social networks, we may wish to predict
whether two users—who are not currently friends on the network—know each other in
real life.

Graph prediction. For example, given a graph that represents a molecule, we can predict
the molecule’s properties, like if it is soluble in water.

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.
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Algorithm 1 Message-passing graph neural network [4, 5]

Input: Graph G = (V,E) with initial node embeddings {h(0)
i = xi : i ∈ V }

1: for ℓ ∈ {0, 1, . . . , L− 1} do
2: for i ∈ V do
3: Node i aggregates its neighbors’ embeddings and computes the vector

z
(ℓ)
i ← Aggregateℓ

({
h
(ℓ)
j : j ∈ N(i)

})
4: Node i updates its own embedding using its previous embedding and z

(ℓ)
i :

h
(ℓ+1)
i ← Updateℓ

(
z
(ℓ)
i ,h

(ℓ)
i

)
Output:

{
h
(L)
1 , . . . ,h

(L)
n

}

To make these types of predictions, the first task will be to associate each node with some
observed data xi ∈ Rd. For example, if the graph represents a road network, features could
include weather and traffic conditions. Recalling that |V | = n, these features form a matrix
X ∈ Rn×d. Everything we discuss today can be extended to edge data as well. In addition
to X, another important matrix is the adjacency matrix A ∈ {0, 1}n×n, which is defined as

A[i, j] =

{
1 if (i, j) ∈ E

0 else.

The first, most basic thing we might try to perform predictions on graphs would be to
concatenate A and X into one long vector and use that vector as the input of a standard
neural network. This approach has two issues. First, the neural network will only work on
graphs of a fixed size, and ideally, we would rather not retrain our network for each size
graph we encounter (this was also a motivation for pointer networks earlier this quarter).
Moreover, if we permute the graph’s nodes, we will likely get a completely different answer
(this would likely be the case for pointer networks as well).

These shortcomings are addressed with GNNs. At a high level, for each node i ∈ V , a
GNN computes an embedding hi = f(G,X, i). As we will see, individual or pairs of embed-
dings can be used for node and edge classification. Moreover, the aggregated embeddings
{h1, . . . ,hn} can be used for graph classification. As we will see, f will be designed in such
a way that it is permutation invariant (meaning that graph-level predictions will remain
the same even if the nodes are permuted), permutation equivariant (meaning that node-
and edge-level predictions will remain the same under permutation), and can be applied to
graphs of any size.

Message-passing graph neural networks (MPNN) achieve these desiderata by performing
message passing over a series of L steps, or layers. For each layer ℓ ∈ [L] and node i ∈ V ,

the GNN computes an embedding h
(ℓ)
i , and the node’s final embedding is h

(L)
i .

The basic form of an MPNN is described by Algorithm 1, with functions Aggregateℓ and
Updateℓ defined as follows. The simplest type of aggregation function is a summation, where

Aggregateℓ

({
h

(ℓ)
j : j ∈ N(i)

})
=
∑

j∈N(i)

h
(ℓ)
j .
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(a) Input graph

(b) Computation trees for nodes A and B

Figure 1: Illustration of Example 2.1. Figure 1a illustrates an input graph and Figure 1b illustrates

the nodes involved in computing the final representations h
(2)
A and h

(2)
B of nodes A and B under a

2-layer GNN.

However, neighborhood sizes can have huge variances, causing summation aggregation func-
tions to have numerical issues. A simple fix is to take the average

Aggregateℓ

({
h

(ℓ)
j : j ∈ N(i)

})
=

1

|N(i)|
∑

j∈N(i)

h
(ℓ)
j ,

and variants thereof [2, 3]. Another option is to take the element-wise maximum, where

z
(ℓ)
i [k] = max

j∈N(i)
h

(ℓ)
j [k]. (1)

As we will see, aggregation functions can have a large influence on how well GNNs perform
on discrete optimization tasks [6]. Max-aggregation (Equation (1)) often performs well for
these tasks (for reasons we have a theoretical understanding of [7, 8]).

The simplest type of update function is a single-layer neural network

Updateℓ

(
z
(ℓ)
i ,h

(ℓ)
i

)
= σ

(
W

(ℓ)
selfh

(ℓ)
i +W

(ℓ)
neighz

(ℓ)
i + b(ℓ)

)
,

where W
(ℓ)
self, W

(ℓ)
neigh, and b(ℓ) are trainable parameters, and σ is a non-linearity (e.g., ReLU).

More generally, the update functions are often shallow, feed-forward neural networks.
To better understand GNN computations, it is useful to unroll their computation trees,

as illustrated by the following example.

Example 2.1. Figure 1a is a simple input graph, and Figure 1b illustrates the nodes involved

in computing the final representations h
(2)
A and h

(2)
B of nodes A and B under a 2-layer
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GNN. In the computation tree for node A in Figure 1b, h
(2)
A is computed by combining the

embeddings of its neighbors from the previous layers, h
(1)
B , h

(1)
C , and h

(1)
D . The second layer’s

aggregation and update functions are represented by the light grey box. Meanwhile, node

B computed the embedding h
(1)
B by combining its neighbors’ previous embeddings, h

(0)
A and

h
(0)
C . Similarly, node C computed the embedding h

(1)
C by combining h

(0)
A and h

(0)
B . The first

layer’s aggregation and update functions are represented by the dark grey boxes.

A key insight, illustrated by Figure 1b, is that in each layer, the aggregation and update
functions are shared across all nodes. This means that we can easily add new nodes and
compute their embeddings. Moreover, since these functions do not depend on the nodes’ in-
dices, they result in permutation equivariant embeddings. To obtain a permutation-invariant
graph embedding, we can apply any permutation-invariant function to the node embeddings,
such as a summation

n∑
i=1

h
(L)
i .

Finally, given the node embeddings, we can perform node, edge, and graph classification
using standard methods, exemplified as follows.

Node classification. Suppose we aim to predict which of C classes a node belongs to. A
standard approach is to train weights w1, . . . ,wC ∈ Rd for each class, and define

yi[k] =
exp

(
wk · h(L)

i

)
∑

j∈[C] exp
(
wj · h(L)

i

)
to be the probability that the node i ∈ V belongs to the class k ∈ [C].

Edge classification. Suppose we aim to predict whether there should be an edge between

two nodes i, j ∈ V . A simple approach could be to train the GNN so that σ
(
h

(L)
i · h

(L)
j

)
(with sigmoid function σ) is the predicted probability that the edge exists.

Graph classification. Finally, we can train any ML model g to make predictions

y = g

(∑
i∈V

h
(L)
i

)
.

Clearly, we have only scratched the surface of the GNN architecture, but this overview
will be sufficient for our purposes. To learn more, I highly recommend checking out the book
chapter on GNNs by Bishop and Bishop [1] and Stanford’s CS224W class.
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