
Stanford MS&E 236 / CS 225: Lecture 7

Reinforcement learning (Q-learning)

Ellen Vitercik∗

April 28, 2024

In the last class, we introduced graph neural networks (GNNs), and in the next few
classes, we will see how we can use them in the discrete optimization pipeline. There are many
different ways to train GNNs for discrete optimization, ranging from supervised learning to
reinforcement learning (RL). This class will lay the groundwork for RL, and in the next class,
we will explore a natural connection between Q-learning and greedy algorithms for NP-hard
problems.

1 Markov decision processes

AMarkov decision process (MDP) models an agent interacting with their environment. They
take actions, which move them between states in their environment. Their transition from
state to state is stochastic, with the transition probabilities depending on the agents’ actions.
When they enter a state, they obtain a reward. Their goal is to learn which actions to take
in each state in order to maximize their cumulative reward.

More formally, an MDP is defined by the following elements:

• A set S of states, which we assume for now to be discrete.

• A set A of actions.

• A transition probability distribution, where P (st+1 | st, at) is the probability the agent
enters state st+1 ∈ S from state st after taking action at ∈ A. Notably, this probability
depends only on the current state and action and not the entire history of states and
actions (which is referred to as the Markov assumption).

• A reward function R : S → R.

The agent’s goal is to compute a learn a policy π : S → A that maximizes its total
(discounted) reward. In particular, if the agent starts in state s0 and then visits states
s1, s2, . . . , then their discounted reward, with discount factor γ ∈ (0, 1), is

∞∑
t=0

γtR(st).

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.
These notes are largely based on Zico Kolter’s slides from CMU’s 15-281 course.

1

https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15780-s16/www/slides/rl.pdf


The discount factor helps ensure the cumulative reward is bounded (if the rewards are
bounded) and intuitively means that the agent prefers reward sooner rather than later (with
the magnitude of γ corresponding to how myopic they are).

Of course, we must take into account that the states the agent visits are stochastic. This
motivates the definition of a policy’s value function V π(s), which is their expected discounted
reward when they start in state s and follow the policy π. More formally,

V π(s) = E

[
∞∑
t=0

γtR(st)

∣∣∣∣∣ s0 = s, at = π(st), (st+1 | st, at) ∼ P

]
.

We can also define V π(s) recursively:

V π(s) = R(s) + γ
∑
s′∈S

P (s′ | s, π(s))V π(s′).

This famous equation is called the Bellman equation.
The optimal policy π∗ achieves the highest value for every state: V π∗

(s) = maxπ V
π(s).

We use the simplified notation V ∗(s) := V π∗
(s). Its Bellman equation can be written as

V ∗(s) = R(s) + γmax
a∈A

∑
s′∈S

P (s′ | s, a)V ∗(s′). (1)

Correspondingly, the optimal policy π∗ chooses the action in each state with the highest
expected value:

π∗(s) = argmaxa∈A
∑
s′∈S

P (s′ | s, a)V ∗(s′).

Said another way, π∗ acts greedily according to its value function.
There are many different ways to compute the optimal policy π∗ and/or its value function

V ∗. For example, value iteration computes an approximation V̂ of V ∗ iteratively as follows:

1. First, initialize the approximation V̂ (s)← 0 for all states s.

2. Repeat the following update for all states s ∈ S until V̂ converges:

V̂ (s)← R(s) + γmax
a∈A

∑
s′∈S

P (s′ | s, a)V̂ (s′) (2)

One can prove that V̂ will converge to V ∗.

2 Reinforcement learning

In reinforcement learning, the twist is that we do not know the transition probability distri-
bution P and/or the reward function R, or the state space is so large that they are impossible
to enumerate. Therefore, it is not possible to compute updates like those in Equation (2).
To overcome these challenges, we will begin by discussing temporal different methods (TD
methods), which will lead naturally to Q-learning.

2



Algorithm 1 Temporal difference learning algorithm

Input: Policy π : S → A
1: Initialize V̂ π(s)← 0 for all states s
2: for t = 1, 2, . . . do
3: Observe state st and reward rt
4: Take action at = π(st) and observe next state st+1

5: Update V̂ π(st) as in Equation (5)

Output: V̂ π

2.1 Temporal difference methods

Given a policy π, TD methods work by computing an estimate V̂ π of V π, estimated over
time as the agent follows the policy π and transitions from state to state. In particular, we
certainly cannot compute the update in Equation (2) for all states s ∈ S, but can we update

V̂ π(st) for the current state st that we are in?
The first thing we might try would be to set

V̂ π(st)
?← rt + γ

∑
s∈S

P (s′ | st, at)V̂ π(s), (3)

but clearly, we cannot compute this sum since we do not know P (s′ | st, at). However, we
know that the state st+1 is a sample from the distribution P (s′ | st, at). Thus, a second try
might be to set

V̂ π(st)
?← rt + γV̂ π(st+1). (4)

However, this update is too harsh: it assumes that st+1 is the only possible next state (i.e.,
it corresponds to Equation (3) with P (st+1 | st, at) = 1).

These two attempts motivate the TD update rule:

V̂ π(st)← (1− α)V̂ π(st) + α
(
rt + γV̂ π(st+1)

)
.

The parameter α allows us to update with our estimate using rt and st+1 as in Equation (4),
but without completely erasing the previous estimate. Another way to define this update is
to set

differencet = rt + γV̂ π(st+1)︸ ︷︷ ︸
new “guess” of V π(st)

− V̂ π(st)︸ ︷︷ ︸
old “guess”

and define
V̂ π(st)← V̂ π(st) + α · differencet. (5)

As we can see from this formulation, the TD update shifts the model in the direction of
the new estimate of V π(st). The magnitude of the shift is proportional to the magnitude
of the difference between the new and old estimates. The basic TD learning algorithm is
summarized in Algorithm 1. One can prove that V̂ π(s) will converge to V π(s) for all states
s visited “often enough.”

3



Algorithm 2 Q-learning algorithm

1: Initialize Q̂∗(s, a)← 0 for all states s ∈ S, a ∈ A
2: Choose initial action a1
3: for t = 1, 2, . . . do
4: Take action at = π(st) and observe reward rt and next state st+1

5: Choose action at+1 = argmaxaQ̂
∗(st+1, a)

6: Update Q̂∗(st, at) as follows:

differencet ← rt + γQ̂∗(st+1, at+1)︸ ︷︷ ︸
new “guess” of Q∗(st,at)

− Q̂∗(st, at)︸ ︷︷ ︸
old “guess”

Q̂∗(st, at)← Q̂∗(st, at) + α · differencet

2.2 Q-learning

Although Algorithm 1 provides a good estimate of V π, the question remains: what do we do
with this estimate when our ultimate goal is to learn the optimal policy? One option might
be to execute execute the greedy policy π′ using V̂ π(s):

π′(s)← argmaxa
∑
s′∈S

P (s′ | s, a)V̂ π(s′),

but . . . we still don’t know P (s′ | s, a)! This motivates the notion of a Q-function.
Q-functions are similar to value functions, but they are defined over state-action pairs.

In particular, given a policy π,

Qπ(s, a) = R(s) + γ
∑
s′∈S

P (s′ | s, a)Qπ(s′, π(s′))

is the value of starting in state s, taking the action a, and then acting thereon according to
the policy π. The optimal policy π∗ acts greedily according to its Q-function Q∗:

π∗(s) = argmaxa∈AQ
∗(s, a).

Naturally, the recursive form of Q∗ is nearly identical to that of the value function V ∗

(Equation (1)):

Q∗(s, a) = R(s) + γ
∑
s′∈S

P (s′ | s, a)max
a′

Q∗(s′, a′)︸ ︷︷ ︸
V ∗(s′)

.

The basic Q-learning algorithm (Algorithm 2) maintains an estimate Q̂∗ of Q∗, which it
updates as the agent moves from state to state, and selects new actions greedily according
to Q̂∗.

2.3 Approximate Q-learning

For very large (or continuous) action spaces, storing Q̂∗(s, a) can be infeasible. Instead, one
can use a function fθ(s, a) parameterized by θ, such as a neural network, to approximate

4



Q̂∗(s, a). We can run Algorithm 2 using fθ(s, a) instead of Q̂∗(s, a), but Step 6 must change.
In particular, we will define

differenceθ,t ← rt + γfθ(st+1, at+1)︸ ︷︷ ︸
new “guess” of Q∗(st,at)

− fθ(st, at)︸ ︷︷ ︸
old “guess”

and update the function fθ via its parameters, setting

θ ← θ − α · dfθ
dθ

(st, at) · differenceθ,t.

This equation mirrors the intuition we gave for Equation (5), where we are shifting the
parameters in the direction of the gradient, with the magnitude of the shift proportional to
the magnitude of the difference between the new and old estimates of Q∗(st, at).

5


	Markov decision processes
	Reinforcement learning
	Temporal difference methods
	Q-learning
	Approximate Q-learning


