Stanford MS&E 236 / CS 225: Lecture 8

Graph neural networks as greedy heuristics

Ellen Vitercik*

April 30, 2024

1 Connecting the dots

We will now connect the dots between Q-learning and the greedy heuristics for NP-hard
problems that we learned about in Lecture 5. First, we review several of the NP-hard
problem formulations that we saw in that lecture.

Minimum vertex cover (MVC). A vertex cover of a graph G = (V,E) isaset S CV
such that every edge (7,j) € E is incident to a vertex in S, i.e., i € S, j € S, or both.
In the MVC problem, the goal is to find a vertex cover S with minimum cardinality

[S]-

Maximum cut. A cut in a graph is a subset of its vertices S C V. The weight of a cut
w(S) is the number of edges that cross S to V' '\ S (assuming for simplicity that G is
unweighted). In the max-cut problem, the goal is to find a cut with maximum weight.

Traveling salesman problem (TSP). In TSP, the goal is to find a tour—which visits
every node exactly once before returning to the starting point—of shortest length.

In that lecture, we saw several greedy algorithms for these problems, which choose a node
to add or remove from the solution which maximizes some score. For example, the MVC
approximation algorithm adds the nodes incident to the edge (i, 7) that maximize the degree
sum |N(i)|4+|N(j)|- The max-cut greedy algorithm chooses a node to switch to the opposite
side of the cut, selecting the node for which that action will lead to the largest improvement
of the cut weight. Finally, the TSP heuristic fathest insertion, which we covered in Lecture
2, iteratively expands a subtour. At each iteration, it adds the city that is farthest from any
city in the subtour. We summarize these scoring rules in Table 1. As we saw in Lecture 5,
these hand-designed scoring rules lead to decent approximation algorithms. In the remainder
of this lecture, we will see that with GNNs and Q-learning, we can use ML to design more
intricate scoring rules which lead to better empirical performance.

*These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

https://vitercik.github.io/ml4do/assets/notes/lecture5.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture2.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture2.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture5.pdf

Problem Scoring rule guiding the problem’s greedy algorithm
MVC Degree sum |N(i)| + |N(j)]

Max cut Improvement in cut weight

TSP Maximum distance from any city in the subtour

Table 1: Scoring rules guiding the greedy algorithms for several NP-hard problems.

Greedy algorithms RL
Partial solution State
Scoring function Q-function

Greedily add the node to the partial solution Greedily take the action with the highest
with the highest score Q-function value

Table 2: Correspondence between greedy algorithms and RL.

2 (@-functions as greedy heuristics

As we saw last lecture, the optimal policy 7* of an MDP is greedy with respect to its Q-
function Q*: in state s, it chooses the action 7*(s) = argmax,.,Q*(s,a). As we will see,
we can draw a close connection between an RL agent acting greedily according to its Q-
function and a greedy algorithm building a solution to an NP-hard problem. As Table 2 lays
out, we will view the greedy algorithm’s partial solution as a state of an MDP. The greedy
algorithm’s scoring function is analogous to the RL agent’s Q-function. Just as the greedy
algorithm will add the node to its partial solution with the highest score, the RL agent will
act greedily according to its Q-function in the vanilla Q-learning algorithm. We illustrate the
connection more formally by defining an MDP with the following states, actions, transition
probabilities, and rewards:

Input. The input is a graph G = (V,), together with a computational problem we aim to
solve (e.g., MVC, max-cut, TSP, ...).

States. A state is a partial solution to the problem. We will denote the partial solution as
a set Sy = (v1,va,...,7)g,) with each v; € V. For example, S; may be a partial vertex
cover, one side of a cut, a partial tour, etc. The initial state is Sy = (). Later on, it will
be useful to represent the state as a vector (S;) € {0, 1}Vl where the i*" component,

x(St), is defined as
1 ifice St
(5:) {O else.
Actions. An action will be to select a vertex i; € S; to add to the partial solution S;.
Transitions. The transition to the next state Sy, is deterministic: Syy1 = (v1,v2,. .., 95, %¢).

Reward. We define the reward r(S;41) to be the change in the NP-hard problem’s objective
when ¢, was added to S;. For example, in max-cut, the optimization objective is the

weight of the cut w(Si11), so 7(Sip1) = w(S; U {it}) — w(S:) = w(Sis1) — w(Sy). B

defining the reward to be the change in problem’s objective, we have that the cumulative
reward over T timesteps is simply the optimization objective evaluated on the final
solution St. For example, for max-cut, the cumulative reward (without discounting) is

D r(S) =Y w(Sy) = w(Si1) = w(Sr) — w(Sy) = w(Sr).

Thus, by maximizing the reward at each timestep, we maximize the weight of the final
cut.

A subtlety in MVC and TSP is that the goal is to minimize the size of the vertex cover
or length of the tour. In this case, we define 7(S;y1) to be the negative change in the
optimization objective when #; is added to S;. For example, in MVC, the goal is to
minimize the size of the vertex cover, so we define

r(Se1) = —(ISt Uit — [Si]) = —1. (1)

Suppose 1" is the number of steps until St is a vertex cover. Then the cumulative
reward (without discounting) is

T
dor(S) =) —1=—|S],

so maximizing the cumulative reward amounts to minimizing |S7|, as desired.

Finally, as in approximate Q-learning, the policy will be greedy according to a parame-
terized estimate of the Q-function fg. In particular, in each timestep ¢, we will choose the
vertex

iy = argmax;gg, fo(x(S:), 7).
To define the neural approximation fg, we will use a GNN. In particular, we compute node

embeddings h4, ..., hjy), using a standard GNN with input node features defined by x(S;)
(see the paper by Dai et al. [3] for implementation details). Then, Dai et al. [3] define

W) hi, thi,t]) :

JjeVv

Jo(x(Sy),1) = w ' relu (

where @ represents all trainable parameters in the GNN together with w, Wi, and Ws. In
other words, given the GNN’s node embeddings fg(x(.S;),7) is the output of a simple, 1-layer
neural network.

This is the basic setup by Dai et al. [3]. For simplicity, we've elided some details. For
example, the single-step reward signals can be fairly uninformative, as exemplified by Equa-
tion (1). To handle this, Dai et al. [3] use experience replay to update the parameters 6
using batches of state-action-reward samples rather than single samples.

3 Results
We now highlight a handful of the results from the paper by Dai et al. [3].

3

=
(23]

. SXV-DON
e PN-AC
i . MVCApprox
T mm MVCApprox-Greedy

Approximation ratio to optimal
i e L Loy
= (o4 L8] =

14 15-20 40-50 50-100 100-200 400-500

Mumber of nodes in train/test graphs

Figure 1: Results for MVC.

3.1 MVC

Figure 1 illustrates the approzimation ratios of four different methods. If ALG is the size
of the vertex cover returned by one of these methods and OPT is the size of the smallest
vertex cover, then the approximation ratio is

ALG
OPT’

The training and test graphs are sampled from the Barabasi-Albert random graph family.
S2V-DQN (short for “structure2vec [2] Deep Q-learning”) is the method described in Sec-
tion 2. PN-AC (short for “Pointer Networks with Actor-Critic”) is a deep learning approach
based on pointer networks, adapted from the paper by Bello et al. [1], which we covered in
Lecture 3 and Lecture 4. MVCApprox-Greedy is the greedy algorithm we covered in Lecture
5, and MVCApprox is a simpler (worse) version of that algorithm. As we can see in Figure 1,
S2V-DQN finds vertex covers that are very close to optimal.

3.2 Max-cut

Figure 2 illustrates the approximation ratios of four different methods. The training and test
graphs are again sampled from the Barabasi-Albert random graph family. MaxcutApprox is
the greedy algorithm we covered in Lecture 5 and SDP is the famous Goemans-Williamson
algorithm [4], which provides the best possible worst-case approximation ratio for max-
cut, assuming the unique games conjecture is true. The greedy algorithm is surprisingly
competitive on these graphs, but S2V-DQN still finds better cuts (with the margin shrinking
as the graphs grow).

3.3 TSP

Finally, Figure 3 illustrates the approximation ratios of S2V-DQN, PN-AC, and a wide
variety of TSP heuristics. These include, for example, 2-opt, which is the 2-approximation

https://vitercik.github.io/ml4do/assets/notes/lecture3.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture4.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture5.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture5.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture5.pdf

Approximation ratio to optimal
b L L = e =
= L (1) = wn o

=
f=)

o e
L o

Approximation ratio to optimal
—
Pt

e
=

1.0

m S2V-DON
. PN-AC

= SDP

B MaxcutApprox

15-20 40-50 50-100 100-200 200-300
Number of nodes in train/test graphs

Figure 2: Results for max-cut.

S52V-DON
Farthest
2-oplt
PM-AC
Cheapest
Christofides
Closest
Nearest
M5T

15-20 40-50 50-100 100-200 200-300
Mumbear of nodes in trainftest graphs

Figure 3: Results for TSP.

algorithm for Euclidean TSP that we covered in Lecture 4. Farthest and Nearest are the
the farthest and nearest insertion heuristics that we covered in Lecture 2. It is interesting
to note that Farthest is competitive with S2V-DQN, and begins to outperform S2V-DQN as
the number of nodes increases.

3.4 Interpretability of the machine-learned heuristics

Dai et al. [3] provide several execution traces of their machine-learned heuristics, comparing
the nodes that S2V-DQN adds versus those that existing greedy algorithm add. For example,
under MVC, S2V-DQN seems to prioritize nodes such that (1) the node has high degree, but
(2) when the node is deleted from the graph, the graph will remain connected, as illustrated
by this example. One can make an intuitive argument for why this might make sense: if the
complement of a partial vertex cover consists of many disconnected subgraphs, any vertex
cover which contains the partial vertex cover will have to include at least one node from each
subgraph.

References

[1] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neu-
ral combinatorial optimization with reinforcement learning. In Workshop track of the
International Conference on Learning Representations (ICLR), 2017.

[2] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models
for structured data. In International Conference on Machine Learning (ICML), 2016.

[3] Hanjun Dai, Elias Boutros Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning
combinatorial optimization algorithms over graphs. Conference on Neural Information
Processing Systems (NeurIPS), 2017.

[4] Michel X Goemans and David P Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of the
ACM (JACM), 42(6):1115-1145, 1995.

https://vitercik.github.io/ml4do/assets/notes/lecture4.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture2.pdf
https://github.com/Hanjun-Dai/graph_comb_opt/blob/master/visualize/mvc-40-50.gif

	Connecting the dots
	Q-functions as greedy heuristics
	Results
	MVC
	Max-cut
	TSP
	Interpretability of the machine-learned heuristics

