
Stanford MS&E 236 / CS 225: Lecture 9

Neural algorithmic reasoning

Ellen Vitercik∗

May 1, 2024

In the last few classes, we have seen how approximation algorithms for NP-hard problems
can be decomposed into learnable “modules,” namely, greedy update steps. Today, we will
see that the same is true for problems that are polynomial-time solvable. In particular, we
will discuss a line of research called “neural algorithmic reasoning” [1, 4, 6–9, 11, 12] that
has studied how to train GNNs to imitate well-known, efficient algorithms like those you
may have learned in an introductory algorithms class.

1 Neural algorithmic reasoning: motivation

Before diving in, we must address the elephant in the room: if we already have an efficient al-
gorithm that exactly solves a problem . . . why train a GNN to solve it? This literature points
out that classical algorithms—such as Dijkstra’s algorithm, Bellman-Ford, Ford–Fulkerson,
etc.—are designed with abstraction in mind, and their inputs must conform to stringent
preconditions. For example, if we were to run Dijkstra’s shortest-paths algorithm in a real-
world routing setting, we would be implicitly assuming that the graph’s edge weights exactly
equal the road network’s commute times. Of course, in actuality, we may only have high-
dimensional features about the road network, such as current congestion levels, weather
patterns, time of day, and so on, all of which factor into commute times in some messy way.

So, let’s assume we have messy, real-world inputs (i.e., with high-dimensional features
assigned to each edge, but not exact commute times), but our algorithm only admits “ab-
stract” inputs (i.e., graphs with a single, exact commute time per edge). The first thing we
might try would be to manually convert the real-world inputs to the appropriate abstract
inputs, as illustrated in Figure 1. However, this task is clearly prone to human error. Next,
we might try replacing the human with a neural network, as illustrated in Figure 2. Many
papers have pointed out issues with this approach [e.g., 3, 5, 10]. Veličković and Blundell [6],
for example, point to its data inefficiency: real-world data is often incredibly rich, and the
approach illustrated in Figure 2 requires us to compress, for example, the data describing
a road segment (for example, traffic and weather conditions) down to a single scalar edge
weight. The classical algorithm (e.g., Dijkstra’s) then commits to using this scalar, assuming
that it is perfect.

Motivated by this discussion, the overall goal will be to create a seamless, differentiable
pipeline from natural inputs to outputs. Since combinatorial tasks are typically too challeng-

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1

Figure 1: Natural inputs converted to abstract inputs by hand. This figure is from a talk by Petar
Veličković.

Figure 2: Natural inputs converted to abstract inputs by a machine learning model. This figure is
from a talk by Petar Veličković.

ing for a model to learn end-to-end, the approach will use existing classical algorithms to (1)
guide our selection of learnable modules and (2) provide intermediate supervision signals.

2 Bellman-Ford algorithm for computing shortest paths

We will use the Bellman-Ford algorithm (Algorithm 1) as a running example. Its intermediate

computations are illustrated in Figure 3. Upon termination, the value x
(|V |−1)
i is the length

of the shortest path between node s and i (if there are no negative cycles in the graph). In

iteration ℓ of Algorithm 1, x
(ℓ)
i is the length of the shortest path between s and i in at most

ℓ hops. Inductively, the length of the shortest path between s and i in at most ℓ + 1 hops,

x
(ℓ+1)
i , is the shorter of:

1. The length of the shortest path between s and i in at most ℓ hops, i.e., x
(ℓ)
i , and

2. The length of the shortest path between s and one of node i’s neighbors in at most ℓ
hops, plus the length of the edge between that neighbor and i. In Algorithm 1, this

value is denoted h
(ℓ)
i .

Thus, we define

x
(ℓ+1)
i ← min

{
h
(ℓ)
i , x

(ℓ)
i

}
in Step 2. Algorithm 1 can easily be updated to return the nodes and edges in the shortest
path between the source node s and any other node.

In the homework, you will show that the Bellman-Ford algorithm can be written as a
simple GNN. (In Lecture 6, we focused on GNNs with only node features. See Algorithm 2
for an example of how edge features could be integrated into the message-passing framework.)

2

https://petar-v.com/talks/AlgoR-KDD.pdf
https://petar-v.com/talks/AlgoR-KDD.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture6.pdf

Algorithm 1 Bellman-Ford algorithm

Input: Graph G = (V,E) with edge weights wi,j ∈ R for each edge (i, j) ∈ E. Source node s ∈ V .
1: for ℓ ∈ {0, 1, 2, . . . , |V | − 2} do
2: For each node i ∈ V , define h

(ℓ)
i and x

(ℓ)
i as follows:

h
(ℓ)
i ← min

j∈N(i)

{
x
(ℓ)
j + wi,j

}
x
(ℓ+1)
i ← min

{
h
(ℓ)
i , x

(ℓ)
i

}
.

Output:
{
x
(|V |−1)
i : i ∈ V

}

(a) Input graph

A B C D E

x(0) 0 ∞ ∞ ∞ ∞

x(1) 0 1 ∞ ∞ 25

x(2) 0 1 2 45 23

x(3) 0 1 2 6 23

x(4) 0 1 2 6 23

(b) Computation trees for nodes A and B

Figure 3: Figure 3b shows the intermediate computations performed by the Bellman-Ford algorithm
given the graph in Figure 3a as input. Node A is the source node.

3 Neural algorithmic reasoning: pipeline

In this lecture, we will cover a simplified version of the neural algorithmic pipeline laid out
by Veličković et al. [8]. For simplicity, we will describe the pipeline when the goal is to train
a GNN to imitate the Bellman-Ford algorithm and thus return the length of the shortest
path between two nodes. (This can easily be extended to predicting the predecessor of each
node of the shortest path, though predicting the length is easier to describe.)

The input is a graphG = (V,E) together with edge features ei,j for all (i, j) ∈ E denoting,
for example, traffic and weather conditions. (This can easily be extended to node and graph
features as well.) The input also include a source node s ∈ V .

At a high level, across each iteration ℓ ∈ 0, 1, 2, . . . , T}, we will update three variables:

• The scalar x̂
(ℓ)
i is meant to predict the length of the shortest path between s and i in

at most ℓ hops. In other words, it is a prediction of x
(ℓ)
i in Algorithm 1.

• The vector z
(ℓ)
i is an encoding of x̂

(ℓ)
i in a higher-dimensional space.

• The vector h
(ℓ)
i is a latent embedding of node i in a higher-dimension space, which

combines the node’s encoding z
(ℓ)
i , its neighbors’ encodings z

(ℓ)
j , and the edge features

ei,j.

3

Algorithm 2 Simple message-passing graph neural network

Input: Graph G = (V,E) with node features xi for each i ∈ V and edge features ei,j for each
(i, j) ∈ E.

1: Define initial node embeddings {h(0)
i = xi : i ∈ V }.

2: for ℓ ∈ {0, 1, 2, . . . , L− 1} do
3: For each node i ∈ V , define h

(ℓ)
i as follows:

h
(ℓ+1)
i ← Uℓ

h
(ℓ)
i ,

⊕
j∈N(i)

Mℓ

(
h
(ℓ)
i ,h

(ℓ)
j , ei,j

)
▷ The functions Uℓ and Mℓ are learnable, like (shallow) neural networks, and⊕

is an aggregation function, like element-wise maximum.

Output:
{
h
(L)
i : i ∈ V

}
Algorithm 3 Simplified neural algorithmic reasoning pipeline

Input: Graph G = (V,E) with edge features ei,j for each (i, j) ∈ E and a source node s ∈ V .

1: Define h
(0)
i = 0 for all i ∈ V .

2: Define x̂
(0)
s = 0 and x̂

(0)
i =∞ (or, for numerical stability, a large number) for all other i ∈ V

3: for ℓ ∈ {0, 1, 2, . . . , T} do
4: Encode: For all i ∈ V , compute the encoding z

(ℓ)
i ← f

(
h
(ℓ)
i , x̂

(ℓ)
i

)
5: Process: Compute the latent embeddings{

h
(ℓ+1)
i : i ∈ V

}
= P

({
z
(ℓ)
i : i ∈ V

}
, {ei,j : (i, j) ∈ E}

)
6: Decode: For all i ∈ V , compute the decoding x̂

(ℓ+1)
i = g

(
z
(ℓ)
i ,h

(ℓ+1)
i

)
Output:

{
x̂
(T+1)
i : i ∈ V

}

In more detail, the pipeline depends on three functions: an encoding function f , a pro-
cessing network P , and a decoding function g. Oftentimes, f and g are simply learned linear
transformations, and P is a simple (e.g., single-layer) GNN. The approach is summarized by
Algorithm 3. Whether to terminate the for-loop in Step 3 (i.e., the ultimate value of T) is

also a learned function of the embeddings
{
h

(ℓ)
i : i ∈ V

}
.

To train the models involved in Algorithm 3, let x
(ℓ)
i be the true values computed by

Bellman-Ford in Algorithm 1. The training loss is computed using this intermediate super-
vision (on graphs for which we know the true commute times) as

T∑
ℓ=1

∥∥x(ℓ) − x̂(ℓ)
∥∥ .

Multi-task reasoning. Many algorithms have similar “modules.” For example, as Veličković
et al. [8] observe, the Bellman-Ford algorithm and breadth-first-search are essentially the
same algorithm up to a transformation of the edge weights. This has inspired researchers

4

0

+∞

+∞

+∞

+∞

6

7

5

−2

−
4

9

7

2

−3

Processor

0

2

7

4

−2

6

7

5

−2
−
4

9

7

2

−3

p0

p1

p2

p3p4

p5
p6

p7

p8

p9

p10

p11

p12

p0

p1

p2

p3p4

p5
p6

p7

p8

p9

p10

p11

p12

f3 g3

5 2 4 3 1 5 2 4 3 1

f2 g2

P

f1 g1

Figure 4: Illustration by Ibarz et al. [4] of their multi-task learning approach to neural algorithmic
reasoning. We learn task-specific encoding and decoding functions for three algorithms: sorting,
finding shortest paths, and finding convex hulls.

to multi-task approaches to neural algorithmic reasoning, where for each algorithm A, we
learn task-specific encoding and decoding functions fA and gA, together with a single, shared
processor network P . This multi-task framework is illustrated in Figure 4.

4 Results

Veličković et al. [9] developed a benchmark that generalizes Algorithm 3 to thirty different
classic algorithms. It is called the “CLRS Algorithmic Reasoning Benchmark,” named after
the famous algorithms textbook by Cormen, Leiserson, Rivest, and Stein [2]. Graph prob-
lems, for example, are trained on Erdős-Rényi (ER) graphs with 16 nodes and tested on ER
graphs with 64 nodes.

Figure 5 is from a paper by Ibarz et al. [4]. Their approach, called Triplet-GMPNN,
builds significantly only the basic framework outlined in Algorithm 3. Figure 5 compares
training Triplet-GMPNN using a multi-task versus single-task training pipeline. This y-
axis measures the test-F1 micro scores reported by Ibarz et al. [4]. Under shortest-paths, for
example, these scores are measured based on the architecture’s accuracy when predicting the
predecessor of each node in the shortest path to it from the source node. As Veličković et al.
[9] write, performance is not measured using scalar values: “evaluating their performance is
ambiguous, and may be dependent on the way architectures choose to represent numbers.”
Subsequent papers [1] have improved beyond the performance exhibited by Ibarz et al. [4],
as illustrated by Figure 6.

References

[1] Beatrice Bevilacqua, Kyriacos Nikiforou, Borja Ibarz, Ioana Bica, Michela Paganini,
Charles Blundell, Jovana Mitrovic, and Petar Veličković. Neural algorithmic reasoning

5

Kn
ut

h-
M

or
ris

-P
ra

tt

He
ap

so
rt

Qu
ick

so
rt

In
se

rti
on

 S
or

t

St
ro

ng
ly

 C
on

n.
 C

om
ps

.

Ar
tic

ul
at

io
n

Po
in

ts

LC
S

Le
ng

th

Br
id

ge
s

Qu
ick

se
le

ct

Op
tim

al
 B

ST BF
S

Di
jk

st
ra

M
ST

 K
ru

sk
al

M
ST

 P
rim

Ta
sk

 S
ch

ed
ul

in
g

M
at

rix
 C

ha
in

 O
rd

er

To
po

lo
gi

ca
l S

or
t

Se
gm

en
ts

 In
te

rs
ec

t

Gr
ah

am
 S

ca
n

M
in

im
um

DA
G

Sh
or

te
st

 P
at

hs

Ac
tiv

ity
 S

el
ec

to
r

Bi
na

ry
 S

ea
rc

h

Be
llm

an
-F

or
d

DF
S

Bu
bb

le
 S

or
t

Ja
rv

is'
 M

ar
ch

Fl
oy

d-
W

ar
sh

al
l

Fi
nd

 M
ax

. S
ub

ar
ra

y

Na
ïv

e
St

rin
g

M
at

ch
er

Ov
er

al
l A

ve
ra

ge

0

20

40

60

80

100

Av
er

ag
e

sc
or

e
[%

] ST
MT

Figure 5: Test-F1 micro scores from the paper by Ibarz et al. [4]. The single-task (ST) and
multi-task (MT) bars represent the performance of the Triplet-GMPNN model by Ibarz et al.
[4], differing only based on whether the model was trained using a single- or multi-task learning
approach. Interestingly, some tasks, like insertion-sort, benefit from a multi-task approach, whereas
others, like bubble sort, suffer.

with causal regularisation. In International Conference on Machine Learning (ICML),
2023.

[2] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press, 2022.

[3] Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management
Science, 68(1):9–26, 2022.

[4] Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Ben-
nani, Róbert Csordás, Andrew Joseph Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yu-
lia Rubanova, et al. A generalist neural algorithmic learner. In Learning on Graphs
Conference, pages 2–1. PMLR, 2022.

[5] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Commu-
nications of the ACM, 65(7):33–35, 2022.

[6] Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):
100273, 2021.

[7] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell.
Neural execution of graph algorithms. In Proceedings of the International Conference
on Learning Representations (ICLR), 2020.

[8] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell.
Neural execution of graph algorithms. In Proceedings of the International Conference
on Learning Representations (ICLR), 2020.

[9] Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea
Banino, Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The CLRS algorithmic
reasoning benchmark. In International Conference on Machine Learning (ICML), 2022.

6

He
ap

so
rt

St
ro

ng
ly

 C
on

n.
 C

om
ps

.

Fl
oy

d-
W

ar
sh

al
l

Qu
ick

so
rt

In
se

rti
on

 S
or

t

Bi
na

ry
 S

ea
rc

h

Bu
bb

le
 S

or
t

DA
G

Sh
or

te
st

 P
at

hs

Ar
tic

ul
at

io
n

Po
in

ts

To
po

lo
gi

ca
l S

or
t

Br
id

ge
s

M
ST

 K
ru

sk
al

Di
jk

st
ra

M
in

im
um

M
ST

 P
rim BF

S

Be
llm

an
-F

or
d

Ov
er

al
l A

ve
ra

ge

0

20

40

60

80

100

Av
er

ag
e

sc
or

e
[%

]
Hint-ReLIC (ours)
Baseline

Figure 6: Test-F1 micro scores from the paper by Bevilacqua et al. [1]. Both models are trained
and tested on single tasks. The baseline is Triplet-GMPNN model by Ibarz et al. [4], so (unfor-
tunately) the orange bars in this figure correspond to the blue bars in Figure 5.

[10] Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline:
Decision-focused learning for combinatorial optimization. In AAAI Conference on Ar-
tificial Intelligence, 2019.

[11] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Ste-
fanie Jegelka. What can neural networks reason about? In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2020.

[12] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Ste-
fanie Jegelka. How neural networks extrapolate: From feedforward to graph neural
networks. In Proceedings of the International Conference on Learning Representations
(ICLR), 2021.

7

	Neural algorithmic reasoning: motivation
	Bellman-Ford algorithm for computing shortest paths
	Neural algorithmic reasoning: pipeline
	Results

