Welcome to
Machine Learning for
Discrete Optimization!

About me

Ellen Vitercik

Assistant Professor at Stanford
Management Science & Engineering
Computer Science

Research revolves around
* Machine learning for discrete optimization
* Interface between economics and computation

About me

BA: Columbia
Math

PhD: Carnegie Mellon
Computer Science

ey ,
LY

”L‘l«-l'

Postdoc: UC Berkeley

Grew up in Lincoln, Vermont

Plan for today

1. Introduction
2. Course logistics
3. Overview of course topics

How to integrate machine learning
into discrete optimization?

(O Algorithm configuration
How to tune an algorithm’s parameters?

(O Algorithm selection
Given a variety of algorithms, which to use?

(O Algorithm design

Can machine learning guide algorithm discovery?

How to integrate machine learning
into discrete optimization?

(O Algorithm configuration
How to tune an algorithm’s parameters?

O Algorithm selection
Given a variety of algorithms, which to use?

O Algorithm design

Can machine learning guide algorithm discovery?

Algorithm contiguration

Example: Integer programming solvers
Most popular tool for solving combinatorial (& nonconvex) problems

Routing Manufacturing Scheduling Planning Finance

Algorithm contiguration

IP solvers (CPLEX, Gurobi) have a ton parameters
« CPLEX has 170-page manual describing 172 parameters
* Tuning by hand is notoriously slow, tedious, and error-prone

CPX_PARAM_NODEFILEIND 100
CPX_PARAM_NODELIM 101
CPX_PARAM_NODESEL 102

CPX_PARAM_TRELIM 160
CPX_PARAM_TUNINGDETTILIM 160
CPX_PARAM_TUNINGDISPLAY 162

CPX_PARAM_NUMERICALEMPHASIS 102CPX_PARAM_TUNINGMEASURE 163

CPX_PARAM_NZREADLIM 103
CPX_PARAM_OBJDIF 104
CPX_PARAM_OBJLLIM 105
CPX_PARAM_OBJULIM 105
CPX_PARAM_PARALLELMODE 108
CPX_PARAM_PERIND 110
CPX_PARAM_PERLIM 111

CPX_PARAM_TUNINGREPEAT 164
CPX_PARAM_TUNINGTILIM 165
CPX_PARAM_VARSEL 166
CPX_PARAM_WORKDIR 167
CPX_PARAM_WORKMEM 168
CPX_PARAM_WRITELEVEL 169
CPX_PARAM_ZEROHALFCUTS 170

CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30
CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut
CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut
CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46

CPX_PARAM_POLISHAFTERNODE 115
CPX_PARAM_POLISHAFTERTIME 116
CPX_PARAM_POLISHTIME
(deprecated) 116
CPX_PARAM_POPULATELIM 117
CPX_PARAM_PPRIIND 118
CPX_PARAM_PREDUAL 119
CPX_PARAM_PREIND 120
CPX_PARAM_PRELINEAR 120
CPX_PARAM_PREPASS 121
CPX_PARAM_PRESLVND 122
CPX_PARAM_PRICELIM 123
CPX_PARAM_PROBE 123
CPX_PARAM_PROBEDETTIME 124
CPX_PARAM_PROBETIME 124
CPX_PARAM_QPMAKEPSDIND 125
CPX_PARAM_QPMETHOD 138
CPX_PARAM_QPNZREADLIM 126

CPXPARAM_CPUmask 48
CPXPARAM_DistMIP_Rampup_Duration 128
CPXPARAM_LPMethod 136
CPXPARAM_MIP_Cuts_BQP 38
CPXPARAM_MIP_Cuts_Locallmplied 77
CPXPARAM_MIP_Cuts_RLT 136
CPXPARAM_MIP_Cuts_ZeroHalfCut 170
CPXPARAM_MIP_Limits_CutsFactor 52
CPXPARAM_MIP_Limits_RampupDetTimeLimit

CPXPARAM_MIP_Limits_RampupTimeLimit 128

CPXPARAM_MIP_Limits_Solutions 79
CPXPARAM_MIP_Limits_StrongCand 154
CPXPARAM_MIP_Limits_Stronglt 154
CPXPARAM_MIP_Limits_TreeMemory 160
CPXPARAM_MIP_OrderType 91
CPXPARAM_MIP_Pool_AbsGap 146
CPXPARAM_MIP_Pool_Capacity 147
CPXPARAM_MIP_Pool_Intensity 149

CPX_PARAM_RANDOMSEED 130
CPX_PARAM_REDUCE 131
CPX_PARAM_REINV 131
CPX_PARAM_RELAXPREIND 132
CPX_PARAM_RELOBJDIF 133
CPX_PARAM_REPAIRTRIES 133
CPX_PARAM_REPEATPRESOLVE 134
CPX_PARAM_RINSHEUR 135
CPX_PARAM_RLT 136
CPX_PARAM_ROWREADLIM 141
CPX_PARAM_SCAIND 142
CPX_PARAM_SCRIND 143
CPX_PARAM_SIFTALG 143
CPX_PARAM_SIFTDISPLAY 144
CPX_PARAM_SIFTITLIM 145
CPX_PARAM_SIMDISPLAY 145
CPX_PARAM_SINGLIM 146
CPX_PARAM_SOLNPOOLAGAP 146

CPX_PARAM_SOLNPOOLCAPACITY 147

CPX_PARAM_SOLNPOOLGAP 148

CPXPARAM_MIP_Pool_RelGap 148
CPXPARAM_MIP_Pool_Replace 151
CPXPARAM_MIP_Strategy_Branch 39
CPXPARAM_MIP_Strategy_MIQCPStrat 93

CPX_PARAM_FLOWCOVERS 70
CPX_PARAM_FLOWPATHS 71
CPX_PARAM_FPHEUR 72
CPX_PARAM_FRACCAND 73

CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73

CPXPARAM_MIP_Strategy_VariableSelect 166
CPXPARAM_MIP_SubMIP_NodeLimit 155
CPXPARAM_OptimalityTarget 106
CPXPARAM_Output_WriteLevel 169
CPXPARAM_Preprocessing_Aggregator 19
CPXPARAM_Preprocessing_Fill 19
CPXPARAM_Preprocessing_Linear 120
CPXPARAM_Preprocessing_Reduce 131
CPXPARAM_Preprocessing_Symmetry 156
CPXPARAM_Read_DataCheck 54
CPXPARAM_Read_Scale 142
CPXPARAM._ScreenOutput 143
CPXPARAM_Sifting_Algorithm 143
CPXPARAM _Sifting_Display 144
CPXPARAM_Sifting_Iterations 145

CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145

CPX_PARAM_SOLNPOOLREPLACE 151

CPX_PARAM_SOLUTIONTARGET
deprecated: see
CPXPARAM_OptimalityTarget 106
CPX_PARAM_SOLUTIONTYPE 152
CPX_PARAM_STARTALG 139
CPX_PARAM_STRONGCANDLIM 154
CPX_PARAM_STRONGITLIM 154
CPX_PARAM_SUBALG 99
CPX_PARAM_SUBMIPNODELIMIT 155
CPX_PARAM_SYMMETRY 156
CPX_PARAM_THREADS 157
CPX_PARAM_TILIM 159

CPXPARAM_Simplex_Limits_Singularity 146
CPXPARAM._ SolutionType 152
CPXPARAM_Threads 157
CPXPARAM_TimeLimit 159
CPXPARAM_Tune_DetTimeLimit 160
CPXPARAM_Tune_Display 162
CPXPARAM_Tune_Measure 163
CPXPARAM_Tune_Repeat 164
CPXPARAM_Tune_TimeLimit 165
CPXPARAM_WorkDir 167
CPXPARAM_WorkMem 168
Cralnd 50

CPX_PARAM_FRACPASS 74
CPX_PARAM_GUBCOVERS 75
CPX_PARAM_HEURFREQ 76
CPX_PARAM_IMPLBD 76
CPX_PARAM_INTSOLFILEPREFIX 78
CPX_PARAM_INTSOLLIM 79
CPX_PARAM_ITLIM 80
CPX_PARAM_LANDPCUTS 82
CPX_PARAM_LBHEUR 81
CPX_PARAM_LPMETHOD 136
CPX_PARAM_MCEFCUTS 82

CPX_PARAM_BRDIR 39
CPX_PARAM_BTTOL 40
CPX_PARAM_CALCQCPDUALS 41
CPX_PARAM_CLIQUES 42
CPX_PARAM_CLOCKTYPE 43
CPX_PARAM_CLONELOG 43
CPX_PARAM_COEREDIND 44
CPX_PARAM_COLREADLIM 45
CPX_PARAM_CONFLICTDISPLAY 46
CPX_PARAM_COVERS 47
CPX_PARAM_CPUMASK 48
CPX_PARAM_CRAIND 50
CPX_PARAM_CUTLO 51
CPX_PARAM_CUTPASS 52
CPX_PARAM_CUTSFACTOR 52
CPX_PARAM_CUTUP 53

CPX_PARAM_MEMORYEMPHASIS 83 CPX_PARAM_DATACHECK 54

CPX_PARAM_MIPCBREDLP 84
CPX_PARAM_MIPDISPLAY 85
CPX_PARAM_MIPEMPHASIS 87
CPX_PARAM_MIPINTERVAL 88
CPX_PARAM_MIPKAPPASTATS 89
CPX_PARAM_MIPORDIND 90
CPX_PARAM_MIPORDTYPE 91
CPX_PARAM_MIPSEARCH 92
CPX_PARAM_MIQCPSTRAT 93
CPX_PARAM_MIRCUTS 94
CPX_PARAM_MPSLONGNUM 94
CPX_PARAM_NETDISPLAY 95
CPX_PARAM_NETEPOPT 96
CPX_PARAM_NETEPRHS 96
CPX_PARAM_NETFIND 97
CPX_PARAM_NETITLIM 98
CPX_PARAM_NETPPRIIND 98

CPX_PARAM_DEPIND 55
CPX_PARAM_DETTILIM 56
CPX_PARAM_DISJCUTS 57
CPX_PARAM_DIVETYPE 58
CPX_PARAM_DPRIIND 59
CPX_PARAM_EACHCUTLIM 60
CPX_PARAM_EPAGAP 61
CPX_PARAM_EPGAP 61
CPX_PARAM_EPINT 62
CPX_PARAM_EPMRK 64
CPX_PARAM_EPOPT 65
CPX_PARAM_EPPER 65
CPX_PARAM_EPRELAX 66
CPX_PARAM_EPRHS 67
CPX_PARAM_FEASOPTMODE 68
CPX_PARAM_FILEENCODING 69

Algorithm contiguration

IP solvers (CPLEX, Gurobi) have a ton parameters
« CPLEX has 170-page manual describing 172 parameters
* Tuning by hand is notoriously slow, tedious, and error-prone

What's the best configuration for the application at hand?

Best configuration for routing problems |
ikely not suited for scheduling

How to integrate machine learning
into discrete optimization?

O Algorithm configuration
How to tune an algorithm’s parameters?

(O Algorithm selection
Given a variety of algorithms, which to use?

O Algorithm design

Can machine learning guide algorithm discovery?

Example: Clustering

Many different algorithms

K-means Mean shift Ward

© @ ©
1V 1V, n
W W W

How to select the best algorithm for the application at hand?

Algorithm selection in theory

Worst-case analysis has been the main framework for decades
Has led to beautiful, practical algorithms

Worst-case analysis’s approach to algorithm selection:
Select the algorithm that's best in worst-case scenarios

Worst-case instances rarely occur in practice

How to integrate machine learning
into discrete optimization?

O Algorithm configuration
How to tune an algorithm’s parameters?

O Algorithm selection
Given a variety of algorithms, which to use?

(O Algorithm design

Can machine learning guide algorithm discovery?

How to integrate machine learning
into discrete optimization?

My objective:
Future engineers will have a nuanced understanding of ML's

power and limitations
when used to solve discrete optimization problems

How to integrate machine learning
into discrete optimization?

My long-term goal:
Researchers will be empowered with data-driven tools to

Q- Conceive
& Prototype
. Validate

algorithmic ideas...
and provide theoretical guarantees for their discoveries

How to integrate machine learning
into discrete optimization?

Area is built on a key observation:

In practice, we have data about
the application domain

In practice, we have data
the application domain

In practice, we have data about

the application apmain Y

§/‘\ -

Clustering problems a biology lab solves]

i \
b Nar—

In practice, we have data about
the application domain

15 S ey ¥ \ g ORI ». B L g
T\\ .'_ 3 o £ .. P V-‘Y.—\,y_;_“ s o B) TR
o SHPG R i — N :
Ly s x o S Tenane

e e

o Schedullng problems an airline solves

9 .o - & - %] . "N ” X2 EXs k3 L

-

In practice, we have data about
the application domain

How can we use this data to guide:

(O Algorithm configuration
How to tune an algorithm’s parameters?

(O Algorithm selection
Given a variety of algorithms, which to use?

(O Algorithm design

Can machine learning guide algorithm discovery?

ML + discrete opt: Potential impact

Example: integer programming
* Used heavily throughout industry and science
« Many different ways to incorporate learning into solving
* Solving is very difficult, so ML can make a huge difference

Example: Spectrum auctions

*In"16-"17, FCC held a $19.8 billion radio spectrum auction

* Involves solving huge graph-coloring problems

Vool 1
¥ T S — Best MIP solver
AN 2) .
)5 x c 9 0: (Gurobi)
) B ..‘. '_‘: (qv) .
g O / — Best SAT solver
%\\ ; L7) (Gnovelty+PCL)

0.01 0.1 1 10 100 — SATFC 2.3.1

Runtime(s)

* SATFC uses algorithm configuration + selection
* Simulations indicate SATFC saved the government billions

Leyton-Brown et al., PNAS'17; Leyton-Brown and Hutter, ICML'19 tutorial

A bit of history

Important research direction in artificial intelligence for decades

Has led to breakthroughs in
« Combinatorial auction winner determination
o SAT
« Constraint satisfaction
* Integer programming
e Many other areas

A bit of history

Algorithm selection
[Rice '76]

—0 O

Data-driven approaches
to algorithm selection
[e.g., Lobjois, Lemaitre,

‘98: Gomes, Selman, ‘01]

Machine learning for
algorithm selection
[e.g., Kadioglu et al.,

2010, Leyton-Brown et al.,
2009, Sandholm, 2013, Xu

et al., 2008, 2010, 2011]

RL for discrete
optimization
[e.g., Zhang, Dietterich,
‘95]

Runtime prediction
[e.g., Horvitz et al., ‘01]

Machine learning for
algorithm configuration
[e.g., Hutter et al. '09, "10,

11, Ansétegui et al. ‘09,
Sandholm, 2013]

A bit of history

2017:
Around the start of the
material in this course

Course topics

Range of techniques for integrating ML into algorithm design

1. Applied topics
i. Sequence-to-sequence models
ii. Graph neural networks
iii. Transformers and LLMs

2. Theoretical topics
i. Statistical guarantees and online algorithm configuration
ii. Algorithms with predictions

Outline

1. Introduction

2. Course logistics
3. Applied topics
4. Theoretical topics

Course overview

Website: vitercik.github.io/ml4do

On the website, you can find syllabus information like:
» Office hours
* Project policy
 Homework late policy
« Schedule of topics with supplementary readings

vitercik.github.io/ml4algs

Prerequisites

Introductory course in algorithms/optimization
* E.g.,CS 161 or MS&E 111/211

Introductory course in machine learning

« E.g., CS 229
* You should be familiar with basic feed-forward neural networks

Class breakdown

10%
45%
45%

Participation
Homework assignments (3 total)

Project

Policies

10% Participation
* In-class participation recorded using in-class polls (starting next class)

e Can't come class?

« Watch lecture online (posted after class on Canvas)
« Send 100-word summary to instructors [details will be announced]
« Must be set before the start of the next class

« 2 absent passes, no summary necessary, no questions asked

Policies

45% Weekly assignments (3 total)

* Total of 4 late days for assignments, e.g.:
* No penalty if you submit 1 assignment 4 days late
« Or 2 assignments 2 days late, ...
* Beyond that, grade goes down by 7 points for every 12 hours it's late
. E.g., 90% to 83%
* Lasts until week after deadline, at which point assignment will receive grade 0%
* Ask questions on Ed Discussion (linked to on Canvas)
 Fastest way to reach course staff

Policies

Policies intended to cover all

* Sicknesses
« Family events
» Sports events

Use your late days carefully!

Please come talk to me if you're struggling!

Policies

45% Project
« Write a "mini-paper” as a final project
« Can take one of two forms:
* Research
* Survey

Option 1: Research project

Present progress your group made on a relevant problem

Report should adopt the structure of a research paper
(Not required to reach the standard for academic publishing)

Option 2: Survey project

Choose 2-4 papers discussed in class. For each paper:

1. Summarize a paper that the paper covered in class cites
How does the paper covered in class build on the older paper?

2. Summarize a paper that cites the paper covered in class
How does the more recent paper build on the paper covered in class?

3. Imagine you're a new researcher working in this area
* Propose an imaginary follow-up project
* Not just based on the paper covered in class...
but only possible due to the existence and success of that paper

Working in groups

* Welcome to work in groups on the final project

* Groups should include:

« At most three students if it's a research project
« At most two students if it's a survey project

* Group of two must put twice as much work into project
 Similarly for groups of three

* The paper length for final write-up is:
e 3if solo-authored,
 5if there are two authors, and
e 7 ifthere are three authors

Milestones

May 1: Submit a short progress report of 1-2 pages
Describe your project and partial progress

June 5: Students will present their final project during class

June 12: Each group will submit their final report

Class format

Whiteboard!

e Studies show that students learn better from whiteboard vs. slides

« Writing down notes helps you learn
« As opposed to just following along in slides

e | automatically go slower

Please ask questions in class!

Z2-minute anonymous surveys

» Watch out for an email about a 2-min anonymous survey

e Random set of students asked each week
* You'll be asked 2-3 times during the quarter to fill it out

e It's so useful for us!

Please use it to tell us:
* What's going well &
« What you're confused about &
* How we can best help you learn!

OAE

Let me know if you have an OAE letter as soon as possible
Thanks!

Outline

1. Introduction
2. Course logistics
3. Applied topics

a. Pointer networks for the traveling salesman problem (TSP)

b. Graph neural networks
c. Transformers and LLMs

4. Theoretical topics

Traveling salesman problem

* One of the most famous NP-hard problems

* Input: network with n nodes, representing a map with n cities

« Goal: compute the shortest-distance tour
Should pass through each city exactly once

Waltham
Boston

Routing Manufacturing Planning

Farthest-first heuristic

Many heuristics for TSP

1. Start with subtour {1}

2. Among all cities not in the subtour:
Choose the one that's farthest from any city in the subtour

3. Insert it into the subtour
Position: where it causes the smallest tour length increase

Farthest-first heuristic

A LOUNGE

Farthest-first heuristic

A LOUNGE

Farthest-first heuristic

A LOUNGE

Farthest-first heuristic

Farthest-first heuristic

Farthest-first heuristic

A LOUNGE

Heuristics for TSP

Many heuristics for TSP
* Nearest neighbor
* Nearest insertion
* Cheapestinsertion
e Random insertion
* Christofides algorithm

Goal: use ML to uncover a better heuristic

Topics

This module: early approaches to DL for discrete optimization
circa '15-"1/7

We'll cover:
* Recurrent neural networks
Long-short term memories (LSTMSs)
* Pointer networks: use LSTMs to output a permutation
* Training pointer networks for TSP (policy gradient)

Vinyals, Fortunato, Jaitly, NeurlPS'15; Bello, Pham, Le, Norouzi, Bengio, ICLR"17

Pointer networks

I ! 1 I
! l 1 I
1
l

v v J—
v v 1

Cityl — City2 — City3 — City4

1st city 2nd city 3rd city 4th city
In tour in tour in tour in tour

Shows promise that ML can be useful for discrete optimization

But treats cities as a sequence, losing the network structure &

Vinyals, Fortunato, Jaitly, NeurlPS'15; Bello, Pham, Le, Norouzi, Bengio, ICLR"17

Outline

1. Introduction
2. Course logistics
3. Applied topics

a. Pointer networks for the traveling salesman problem (TSP)

b. Graph neural networks
c. Transformers and LLMs

4. Theoretical topics

Many types of data are graphs

% : . ?A/\)\(\X\:Aéc.y 2

‘RRM1°,
o o2 B
12° / *\ \ CDKN2A EGFR
‘TOP2A o Fe .
SN BRAF °
B AeIRss A .
3 e °
o MENI<coNNBl %/ °

"
“TERT « « .| SPARC °.
o o IGFZ\ /.

ZNRF3 IGFIR 1
edit: SalientNetworks 8 .

Event Graphs Computer Networks

Disease Pathways

Chesapeake Bay Waterbird Food Web
==
e 8
Osprey
o Bald Cagle
Ny /
. 51 o 7 2
socony << 1 AT (
o S s w?\m ey e
= op
0 St s
Conumers: 77 e W'l”
v -\ 1 - 2)
prov— & s > =7
Sowpboon Hetwvorous. Geese and
o el
P it e ;
e 28 iaiten S e Vet 549 _ Vion

edit: Pinteres Image credit: visitlondon.cor

Food Webs Partide Networks

Underground Networks

Slide by Leskovec

Graph terminology

P \

t [Nodes/vertices
[Edges |
sela

e [

Today: Modern ML toolbox

Modern DL toolbox is designed for simple sequences & grids

Patterns of Local [Eratdants
Contrast 2 2

INZ RS
DA
2 Q¢
SRZ
$S8s
Y
»’1 P"i\'r“\

Dl
N
oto
3
X

‘;» ‘5"
AR
RS
RN
ALK
QO
X7 INK
D

Output Layer

Hidden Layer 2

Images

Hidden Layer 1

Input Layer

®

t |
Text/SpeechW - = NN

J ©

J

@—L

Slide by Leskovec

Why is graph deep learning hard?

Networks are complex
* Arbitrary size and complex topological structure

versus
Text

Networks Images

* No fixed node ordering or reference point
« Often dynamic and have multimodal features

Figure by Leskovec

GNN motivation

Special type of NN architecture for tasks involving graphs
How to utilize relational structure for better prediction?

GNN overview

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

ms w0 =

m

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

L 4

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

Node message

N B

Deep neural network

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

ms w0 =

m

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

me mn o\ /who

me T

b

SuE.

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

Outline

1. Introduction
2. Course logistics
3. Applied topics

a. Pointer networks for the traveling salesman problem (TSP)

b. Graph neural networks
i. Greedy algorithms
ii. Integer programming and SAT

c. Transformers and LLMs

4. Theoretical topics

Greedy algorithms

Many graph problems are NP-hard

Greedy algorithms: a common type of fast heuristic algorithm

Example: minimum vertex cover

Find smallest vertex subset such that each edge is covered

Example application:
Installing cameras in corners covering all hallways on a floor

'

Example: minimum vertex cover

Find smallest vertex subset such that each edge is covered

Classic greedy algorithm:
Greedily add vertices of edge with maximum degree sum

Degree Degree
sum: / sum: 6

<IN

Degree: # of edges adjacent to a vertex

Example: minimum vertex cover

Find smallest vertex subset such that each edge is covered

Classic greedy algorithm:
Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

<IN

Example: TSP

1. Among all cities not in the subtour:
Choose the one that's farthest from any city in the subtour

2. Insert it into the subtour Scoring function that guides greedy algorithm

RL for combinatorial optimization

Goal: learn a scoring function to guide greedy algorithm
Represented by a GNN

We'll see how to use Q-learning to train GNN

&5 Vv
AAAAAAA

ML as a toolkit for theory?

E.g., Dai etal. [NeurlPS"17] write that their RL alg discovered:
“New and interesting” greedy strategies for MAXCUT and MVC
“which intuitively make sense but have not been analyzed before,”
thus could be a “good assistive tool for discovering new algorithms.”

Outline

1. Introduction
2. Course logistics
3. Applied topics

a. Pointer networks for the traveling salesman problem (TSP)

b. Graph neural networks
i. Greedy algorithms
ii. Integer programming and SAT

c. Transformers and LLMs

4. Theoretical topics

Integer programming

/Integer program (IP)\
max C€-Zz
st. Az <Db
e Z"
N Y

Tons of applications:

Routing Manufacturing Scheduling Planning Finance

Integer programming

/Integer program (IP)\
max C€-Zz
st. Az <Db

. VA=A y

[IP optimal solution]

Integer programming

Recursively partitions feasible region
Partition organized with a tree data structure

Partitioning policy has a big impact on runtime

Goal: Use a GNN to guide tree search
Large improvements over leading open-source solver

GNNs for integer programming

Key insight: IP can be encoded as a graph

max 9x; + 5x, + 6x5 + 4x,

s.t. 6x; + 3x, + 5X3 + 2x, < 10 (Cl) Constraints Variables
x3 + x4 <10 (cy)
—X1+x3 <0 (c3)
—X; +x, <0 (cy)

X1, X,X3,X4 € {0,1}

Goal: Use a GNN to guide tree search
Large improvements over leading open-source solver

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurlPS'19

SAT

(%1 V x4) SAT: Is there an assignment of x4, ..., x;, € {0,1}
A(x; VX3 VZg) suchthatthisformula evaluates to True?

A(xqVxgVxqy)
A (X3 V Xq1)

Published as a conference paper at ICLR 2019

/\ (f V f V X) LEARNING A SAT SOLVER FROM SINGLE-BIT SUPER-
7 3 9 VISION
/\ (x 7 V x 8 V x 9) Daniel Selsam, Matthew Lamm, Benedikt Biinz, Percy Liang, David L. Dill
Department of Computer Science
Stanford University
s~/ Stanford, CA 94385
/\ X7 V x8 V xlo {dselsam, mlamm, buenz,pliang,dill}@cs.stanford.edu
_— Leonardo de Moura
Microsoft Research
/\ (x7 V xlO V xlz) Redm ndt. WA 9805
leonardo@microsoft.com

Topics
* Graph fundamentals and famous graph algorithms
* GNNs

 Reinforcement learning (Q-learning)

* Integer programming and SAT solving

Outline

1. Introduction
2. Course logistics
3. Applied topics

a. Pointer networks for the traveling salesman problem (TSP)
b. Graph neural networks

c. Integer programming

d. Transformers and LLMs

4. Theoretical topics

Integer programming

[max C:Z AR Formulating a problem as an IP can be hard
st. Az <Db * Requires a lot of domain expertise
VAN /A

Tons of applications:

Routing Manufacturing Scheduling Planning Finance

LLMs for discrete modeling

[max C-z e -ormulating a problem as an IP can be hard
st. Az<pb | * Requiresa lotof domain expertise
A=WAL * How to use LLMs to for discrete modeling

Guest lecture by
Madeleine Udell

Topics
e Transformers

 Transformers as algorithms
E.g., can you teach a transformer to add?

* LLMs for discrete modeling

Outline

1. Introduction
2. Course logistics
3. Applied topics

4. Theoretical topics
i. Statistical guarantees and online algorithm configuration

ii. Algorithms with predictions
5. Plan for the next 2 weeks

Algorithm contiguration

Example: IP solvers (CPLEX, Gurobi) have a ton parameters
What's the best configuration for the application at hand?

Best configuration for routing problems |
likely not suited for scheduling

Modeling the application domain

Problem instances drawn from application-specific dist. D

E.g., distribution over routing problems

Widely assumed in applied research, e.qg.:

Horvitz, Ruan, Gomez, Kautz, Selman, Chickering UAI'O1
Xu, Hutter, Hoos, Leyton-Brown JAIR'08
He, Daumé, Eisner NeurlPS'14
And theoretical research on algorithm configuration, e.g.:
Gupta, Roughgarden ITCS'16

Balcan Book Chapter'20

Automated configuration procedure

1. Fix parameterized algorithm
2. Receive set of “typical” inputs sampled from unknown D

Problem instance 1 Problem instance 2
5 vee

3. Return parameter setting p with good avg performance

Runtime, solution quality, etc.

Automated configuration procedure

Seen Unseen
, % 2

Problem instance 1 Problem instance 2 New problem instance
4 & 2

_ AN J

Statistical question: Will p have good future performance?
More formally: Is the expected performance of p also good?

Gupta, Roughgarden, ITCS'16; Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21

Automated configuration procedure

Model is known as the “batch-learning setting”
Optimize over a batch of input problem instances

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Day 1: p; Day 2: p, Day 3: ps

Goal: Compete with best parameter setting in hindsight
* Impossible in the worst case
« Under what conditions is online configuration possible?

Primary challenge

Algorithmic performance is a volatile function of parameters
Complex connection between parameters and performance

Solver search 2500 -

tree size

3000 L

2000

1k

L —

0.00 0.05

0.10

0.15 0.20

Integer programming solver parameter

Balcan, Prasad, Sandholm, Vitercik, NeurlPS'21

Topics
e Statistical learning theory

* Online learning

Outline

1. Introduction
2. Course logistics
3. Applied topics

4. Theoretical topics
i. Statistical guarantees and online algorithm configuration

ii. Algorithms with predictions

Algorithms with predictions

Assume you have some predictions about your problem, e.g.:

Probability any given elementis in a huge database
@ Kraska et al., SIGMOD’'18; Mitzenmacher, NeurlPS'18
In caching, the next time you'll see an element

Lykouris, Vassilvitskii, ICML'18

Main question:
How to use predictions to improve algorithmic performance?

Example: Ski rental problem

« Problem: Skier will ski for unknown number of days
 Can either rent each day for $1/day or buy for $b
 E.g., if skifor 5 days and then buy, total priceis5 + b

* |f ski x days, opt clairvoyant strategy pays OPT = min{x, b}

« Breakeven strategy: Rent for b — 1 days, then buy

CR = ALG

OPT
Competitive ratio

Example: Ski rental problem

Prediction y of number of skiing days, errorn = |x — y|

Algorithm (with parameter 4 € (0,1)):
It y = b, buy on start of day [Ab]; else buy on start of day m

Don’t jump the gun... ...but don't wait too long

Theorem: Algorithm has CR < min {%A, 1+4+ (1_,{;0”}

e If predictoris perfect (n = 0), CRissmall (€ 1+ 1)
* No matter how big 7 is, setting A = 1 recovers baseline CR = 2

Design principals

Consistency:
Predictions are perfect = recover offline optimal

Robustness:
Predictions are terrible = no worse than worst-case

Lykouris, Vassilvitskii, ICML18

Many different applications

Online advertising Scheduling
Mahdian, Nazerzadeh, Saberi, EC'07; Mitzenmacher, ITCS'20; Moseley,
Devanur, Hayes, EC'09; Medina, Vassilvitskii, Lattanzi, Lavastida, SODA'20: ...
Vassilvitskii, NeurlPS'17; ...
Matching
Caching Antoniadis, Gouleakis, Kleer, Kolev,
Lykouris, Vassilvitskii, ICML18; Rohatgji, NeurlPS'20; ...
SODA'19;: Wei, APPROX-RANDOM'20:;
Queuing
Frequency estimation Mitzenmacher, ACDA'21; ...

Hsu, Indyk, Katabi, Vakilian, ICLR"19; ...]
Covering problems

Learning low-rank approximations Bamas, Maggiori, Svensson, NeurlPS'20; ...
Indyk, Vakilian, Yuan, NeurlPS'19; ...

algorithms-with-predictions.github.io

Outline

1. Applied topics

a. Pointer networks for the traveling salesman problem (TSP)
b. Graph neural networks
c. Transformers and LLMs

2. Theoretical topics

a. Statistical guarantees and online algorithm configuration
b. Algorithms with predictions

Looking forward to getting to know you this quarter!

