Welcome to Machine Learning for Discrete Optimization!

About me

Ellen Vitercik

Assistant Professor at Stanford Management Science & Engineering Computer Science

Research revolves around

- Machine learning for discrete optimization
- Interface between economics and computation

About me

Grew up in Lincoln, Vermont

BA: Columbia *Math*

PhD: Carnegie Mellon Computer Science

Postdoc: UC Berkeley

Plan for today

- 1. Introduction
- 2. Course logistics
- 3. Overview of course topics

Algorithm configuration

How to tune an algorithm's parameters?

0

Algorithm selection

Given a variety of algorithms, which to use?

Algorithm design

Can machine learning guide algorithm discovery?

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

O Algorithm design

Can machine learning guide algorithm discovery?

Algorithm configuration

Example: Integer programming solvers

Most popular tool for solving combinatorial (& nonconvex) problems

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has **170-page** manual describing **172** parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

CPX PARAM NODEFILEIND 100 CPX PARAM NODELIM 101 CPX PARAM NODESEL 102 CPX_PARAM_NZREADLIM 103 CPX PARAM OBJDIF 104 CPX_PARAM_OBJLLIM 105 CPX_PARAM_OBJULIM 105 CPX_PARAM_PARALLELMODE 108 CPX_PARAM_PERIND 110 CPX PARAM PERLIM 111 CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30 CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46 CPX_PARAM_POLISHAFTERNODE 115 CPXPARAM_CPUmask 48 CPX_PARAM_POLISHAFTERTIME 116 CPX_PARAM_POLISHTIME (deprecated) 116 CPX_PARAM_POPULATELIM 117 CPX PARAM PPRIIND 118 CPX_PARAM_PREDUAL 119 CPX_PARAM_PREIND 120 CPX_PARAM_PRELINEAR 120 CPX_PARAM_PREPASS 121 CPX_PARAM_PRESLVND 122 CPX PARAM PRICELIM 123 CPX_PARAM_PROBE 123 CPX_PARAM_PROBEDETTIME 124 CPX_PARAM_PROBETIME 124 CPX_PARAM_QPMAKEPSDIND 125 CPX_PARAM_QPMETHOD 138 CPX PARAM OPNZREADLIM 126

CPX PARAM TRELIM 160 CPX_PARAM_TUNINGDETTILIM 160 CPX PARAM TUNINGDISPLAY 162 CPX_PARAM_NUMERICALEMPHASIS_102CPX_PARAM_TUNINGMEASURE_163 CPX_PARAM_TUNINGREPEAT 164 CPX_PARAM_TUNINGTILIM 165 CPX_PARAM_VARSEL 166 CPX_PARAM_WORKDIR 167 CPX_PARAM_WORKMEM 168 CPX PARAM WRITELEVEL 169 CPX PARAM ZEROHALFCUTS 170 CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut 35 CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut 36 CPXPARAM_DistMIP_Rampup_Duration 128 CPXPARAM_LPMethod 136 CPXPARAM_MIP_Cuts_BQP 38 CPXPARAM_MIP_Cuts_LocalImplied 77 CPXPARAM_MIP_Cuts_RLT 136 CPXPARAM_MIP_Cuts_ZeroHalfCut 170 CPXPARAM_MIP_Limits_CutsFactor 52 CPXPARAM_MIP_Limits_RampupDetTimeLimit 127 deprecated: see CPXPARAM_MIP_Limits_RampupTimeLimit 128 CPXPARAM MIP Limits Solutions 79 CPXPARAM MIP Limits StrongCand 154 CPXPARAM_MIP_Limits_StrongIt 154 CPXPARAM_MIP_Limits_TreeMemory 160 CPXPARAM_MIP_OrderType 91 CPXPARAM_MIP_Pool_AbsGap 146 CPXPARAM_MIP_Pool_Capacity 147 CPXPARAM_MIP_Pool_Intensity 149

CPX_PARAM_RANDOMSEED 130 CPX PARAM REDUCE 131 CPX_PARAM_REINV 131 CPX PARAM RELAXPREIND 132 CPX_PARAM_RELOBJDIF 133 CPX PARAM REPAIRTRIES 133 CPX PARAM REPEATPRESOLVE 134 CPX PARAM RINSHEUR 135 CPX_PARAM_RLT 136 CPX_PARAM_ROWREADLIM 141 CPX_PARAM_SCAIND 142 CPX PARAM SCRIND 143 CPX_PARAM_SIFTALG 143 CPX PARAM SIFTDISPLAY 144 CPX_PARAM_SIFTITLIM 145 CPX PARAM SIMDISPLAY 145 CPX_PARAM_SINGLIM 146 CPX_PARAM_SOLNPOOLAGAP_146 CPX_PARAM_SOLNPOOLCAPACITY 147 CPXPARAM_Sifting_Display 144 CPX PARAM SOLNPOOLGAP 148 CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145 CPX PARAM SOLUTIONTARGET CPXPARAM_OptimalityTarget 106 CPX_PARAM_SOLUTIONTYPE 152 CPX_PARAM_STARTALG 139 CPX_PARAM_STRONGCANDLIM 154 CPX_PARAM_STRONGITLIM 154 CPX PARAM SUBALG 99 CPX_PARAM_SUBMIPNODELIMIT 155 CPX_PARAM_SYMMETRY 156 CPX_PARAM_THREADS 157 CPX_PARAM_TILIM 159

CPXPARAM_MIP_Pool_RelGap 148 CPXPARAM_MIP_Pool_Replace 151 CPXPARAM_MIP_Strategy_Branch 39 CPXPARAM MIP Strategy MIOCPStrat 93 CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73 CPXPARAM MIP Strategy VariableSelect 166 CPX PARAM FRACPASS 74 CPXPARAM MIP SubMIP NodeLimit 155 CPXPARAM OptimalityTarget 106 CPXPARAM_Output_WriteLevel 169 CPXPARAM_Preprocessing_Aggregator 19 CPXPARAM_Preprocessing_Fill 19 CPXPARAM Preprocessing Linear 120 CPXPARAM_Preprocessing_Reduce 131 CPXPARAM Preprocessing Symmetry 156 CPXPARAM_Read_DataCheck 54 CPXPARAM Read Scale 142 CPXPARAM_ScreenOutput 143 CPXPARAM Sifting Algorithm 143 CPXPARAM Sifting Iterations 145 CPX PARAM SOLNPOOLREPLACE 151 CPXPARAM Simplex Limits Singularity 146 CPXPARAM_SolutionType 152 CPXPARAM_Threads 157 CPXPARAM_TimeLimit 159 CPXPARAM_Tune_DetTimeLimit 160 CPXPARAM Tune Display 162 CPXPARAM_Tune_Measure 163 CPXPARAM_Tune_Repeat 164 CPXPARAM_Tune_TimeLimit 165 CPXPARAM_WorkDir 167 CPXPARAM_WorkMem 168 CraInd 50

CPX_PARAM_FLOWCOVERS 70 CPX PARAM FLOWPATHS 71 CPX_PARAM_FPHEUR 72 CPX PARAM FRACCAND 73 CPX_PARAM_GUBCOVERS 75 CPX_PARAM_HEURFREQ 76 CPX_PARAM_IMPLBD 76 CPX_PARAM_INTSOLFILEPREFIX 78 CPX_PARAM_COVERS 47 CPX_PARAM_INTSOLLIM 79 CPX PARAM ITLIM 80 CPX_PARAM_LANDPCUTS 82 CPX PARAM LBHEUR 81 CPX_PARAM_LPMETHOD 136 CPX PARAM MCFCUTS 82 CPX_PARAM_MEMORYEMPHASIS CPX PARAM MIPCBREDLP 84 CPX_PARAM_MIPDISPLAY 85 CPX PARAM MIPEMPHASIS 87 CPX_PARAM_MIPINTERVAL 88 CPX PARAM MIPKAPPASTATS 89 CPX_PARAM_MIPORDIND 90 CPX PARAM MIPORDTYPE 91 CPX_PARAM_MIPSEARCH 92 CPX_PARAM_MIQCPSTRAT 93 CPX_PARAM_MIRCUTS 94 CPX PARAM MPSLONGNUM 94 CPX_PARAM_NETDISPLAY 95 CPX PARAM NETEPOPT 96 CPX_PARAM_NETEPRHS 96 CPX PARAM NETFIND 97 CPX_PARAM_NETITLIM 98 CPX PARAM NETPPRIIND 98

CPX_PARAM_BRDIR 39 CPX_PARAM_BTTOL 40 CPX_PARAM_CALCOCPDUALS 41 CPX PARAM CLIOUES 42 CPX_PARAM_CLOCKTYPE 43 CPX PARAM CLONELOG 43 CPX_PARAM_COEREDIND 44 CPX PARAM COLREADLIM 45 CPX_PARAM_CONFLICTDISPLAY 46 CPX_PARAM_CPUMASK 48 CPX PARAM CRAIND 50 CPX_PARAM_CUTLO 51 CPX PARAM CUTPASS 52 CPX_PARAM_CUTSFACTOR 52 CPX PARAM CUTUP 53 83CPX_PARAM_DATACHECK 54 CPX_PARAM_DEPIND 55 CPX_PARAM_DETTILIM 56 CPX PARAM DISICUTS 57 CPX_PARAM_DIVETYPE 58 CPX PARAM DPRIIND 59 CPX_PARAM_EACHCUTLIM 60 CPX PARAM EPAGAP 61 CPX_PARAM_EPGAP 61 CPX PARAM EPINT 62 CPX_PARAM_EPMRK 64 CPX PARAM EPOPT 65 CPX_PARAM_EPPER 65 CPX PARAM EPRELAX 66 CPX_PARAM_EPRHS 67 CPX PARAM FEASOPTMODE 68 CPX_PARAM_FILEENCODING 69

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

What's the best **configuration** for the application at hand?

Best configuration for **routing** problems likely not suited for **scheduling**

Algorithm configuration

How to tune an algorithm's parameters?

Given a variety of algorithms, which to use?

O Algorithm design

Can machine learning guide algorithm discovery?

Example: Clustering

Many different algorithms

How to **select** the best algorithm for the application at hand?

Algorithm selection in theory

Worst-case analysis has been the main framework for decades Has led to beautiful, practical algorithms

Worst-case analysis's approach to **algorithm selection**: Select the algorithm that's best in worst-case scenarios

Worst-case instances rarely occur in practice

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

Algorithm design

Can machine learning guide algorithm discovery?

My objective:

Future engineers will have a nuanced understanding of ML's **power** and **limitations**

when used to solve discrete optimization problems

My long-term goal:

Researchers will be empowered with **data-driven tools** to

- -☆ Conceive
- Prototype
- <u>l≓</u> Validate

algorithmic ideas...

and provide theoretical guarantees for their discoveries

Area is built on a key observation:

In practice, we have data about the application domain

Routing problems a shipping company solves

Clustering problems a biology lab solves

Scheduling problems an airline solves

How can we use this data to guide:

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

Algorithm design

Can machine learning guide algorithm discovery?

ML + discrete opt: Potential impact

Example: integer programming

- Used heavily throughout industry and science
- Many different ways to incorporate learning into solving
- Solving is very difficult, so ML can make a huge difference

Example: Spectrum auctions

In '16-'17, FCC held a \$19.8 billion radio spectrum auction
Involves solving huge graph-coloring problems

- SATFC uses algorithm configuration + selection
- Simulations indicate SATFC saved the government billions

A bit of history

Important research direction in artificial intelligence for decades

Has led to **breakthroughs** in

- Combinatorial auction winner determination
- SAT
- Constraint satisfaction
- Integer programming
- Many other areas

A bit of history

A bit of history

2017: Around the start of the material in this course

Course topics

Range of techniques for integrating ML into algorithm design

1. Applied topics

- i. Sequence-to-sequence models
- ii. Graph neural networks
- iii. Transformers and LLMs

2. Theoretical topics

- i. Statistical guarantees and online algorithm configuration
- ii. Algorithms with predictions

Outline

- 1. Introduction
- **2. Course logistics**
- 3. Applied topics
- 4. Theoretical topics

Course overview

Website: <u>vitercik.github.io/ml4do</u>

On the website, you can find syllabus information like:

- Office hours
- Project policy
- Homework late policy
- Schedule of topics with supplementary readings

Prerequisites

Introductory course in **algorithms/optimization**

• E.g., CS 161 or MS&E 111/211

Introductory course in machine learning

- E.g., CS 229
- You should be familiar with basic feed-forward neural networks

Class breakdown

- 10% Participation
- 45% Homework assignments (3 total)
- 45% Project

10% Participation

- In-class participation recorded using in-class polls (starting next class)
- Can't come class?
 - Watch lecture online (posted after class on Canvas)
 - Send 100-word summary to instructors [details will be announced]
 - Must be set before the start of the next class
- 2 absent passes, no summary necessary, no questions asked

45% Weekly assignments (3 total)

- Total of 4 late days for assignments, e.g.:
 - No penalty if you submit 1 assignment 4 days late
 - Or 2 assignments 2 days late, ...
- Beyond that, grade goes down by 7 points for every 12 hours it's late
 - E.g., 90% to 83%
 - Lasts until week after deadline, at which point assignment will receive grade 0%
- Ask questions on Ed Discussion (linked to on Canvas)
 - Fastest way to reach course staff

Policies intended to cover all

- Sicknesses
- Family events
- Sports events
- ...

Use your late days carefully!

Please come talk to me if you're struggling!

45% Project

- Write a "mini-paper" as a final project
- Can take one of two forms:
 - Research
 - Survey

Option 1: Research project

Present progress your group made on a relevant problem

Report should adopt the structure of a research paper (Not required to reach the standard for academic publishing)

Option 2: Survey project

Choose **2-4 papers** discussed in class. For each paper:

- 1. Summarize a paper that **the paper covered in class cites** *How does the paper covered in class build on the older paper?*
- 2. Summarize a paper that **cites the paper covered in class** How does the more recent paper build on the paper covered in class?
- 3. Imagine you're a **new researcher** working in this area
 - Propose an imaginary follow-up project
 - Not just based on the paper covered in class...
 but only possible due to the existence and success of that paper
Working in groups

- Welcome to work in groups on the final project
- Groups should include:
 - At most three students if it's a **research** project
 - At most two students if it's a **survey** project
- Group of two must put twice as much work into project
 - Similarly for groups of three
- The **paper length** for final write-up is:
 - 3 if solo-authored,
 - 5 if there are two authors, and
 - 7 if there are three authors

Milestones

May 1: Submit a short progress report of 1-2 pages Describe your project and partial progress

June 5: Students will present their final project during class

June 12: Each group will submit their final report

Class format

Whiteboard!

- Studies show that students learn better from whiteboard vs. slides
- Writing down notes helps you learn
 - As opposed to just following along in slides
- I automatically go slower

Please ask questions in class!

2-minute anonymous surveys

- Watch out for an email about a 2-min anonymous survey
- Random set of students asked each week
 - You'll be asked 2-3 times during the quarter to fill it out
- It's so useful for us!

Please use it to tell us:

- What's going well 👙
- What you're confused about ⁽²⁾
- How we can best help you learn!

OAE

Let me know if you have an OAE letter as soon as possible *Thanks!*

Outline

- 1. Introduction
- 2. Course logistics

3. Applied topics

- a. Pointer networks for the traveling salesman problem (TSP)
- b. Graph neural networks
- c. Transformers and LLMs
- 4. Theoretical topics

Traveling salesman problem

- One of the most famous NP-hard problems
- Input: network with n nodes, representing a map with n cities
- **Goal:** compute the shortest-distance tour Should pass through each city exactly once

Manufacturing

Planning

Many **heuristics** for TSP

- 1. Start with subtour {1}
- 2. Among all cities not in the subtour: Choose the one that's *farthest* from any city in the subtour
- 3. Insert it into the subtour

Position: where it causes the smallest tour length increase

Heuristics for TSP

Many **heuristics** for TSP

- Nearest neighbor
- Nearest insertion
- Cheapest insertion
- Random insertion
- Christofides algorithm
- •

Goal: use ML to uncover a better heuristic

This module: early approaches to DL for discrete optimization *circa '15-'17*

We'll cover:

- Recurrent neural networks
 - Long-short term memories (LSTMs)
- **Pointer networks**: use LSTMs to output a permutation
- **Training** pointer networks for TSP (*policy gradient*)

Pointer networks

Shows promise that ML can be useful for discrete optimization

But treats cities as a sequence, losing the network structure 🤔

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
 - a. Pointer networks for the traveling salesman problem (TSP)
 - b. Graph neural networks
 - c. Transformers and LLMs
- 4. Theoretical topics

Many types of data are graphs

Event Graphs

Image credit: <u>Wikipedia</u>

Food Webs

Image credit: SalientNetworks

Computer Networks

Image credit: Pinterest

Particle Networks

Disease Pathways

Image credit: visitlondon.com

Underground Networks

Graph terminology

Today: Modern ML toolbox

Modern DL toolbox is designed for simple sequences & grids

Why is graph deep learning hard?

Networks are complex

• Arbitrary size and complex topological structure

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

GNN motivation

Special type of NN architecture for tasks involving graphs How to utilize relational structure for better prediction?

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
 - a. Pointer networks for the traveling salesman problem (TSP)
 - b. Graph neural networks
 - i. Greedy algorithms
 - ii. Integer programming and SAT
 - c. Transformers and LLMs
- 4. Theoretical topics

Greedy algorithms

Many graph problems are **NP-hard**

Greedy algorithms: a common type of fast heuristic algorithm

Example: minimum vertex cover

Find smallest vertex subset such that each edge is covered

Example application:

Installing cameras in corners covering all hallways on a floor

Example: minimum vertex cover

Find smallest vertex subset such that each edge is covered

Classic greedy algorithm:

Greedily add vertices of edge with maximum degree sum

Example: minimum vertex cover

Find smallest vertex subset such that each edge is covered

Classic greedy algorithm:

Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

Example: TSP

 Among all cities not in the subtour: Choose the one that's *farthest* from any city in the subtour

2. Insert it into the subtour scoring function that guides greedy algorithm

RL for combinatorial optimization

Goal: learn a scoring function to guide greedy algorithm Represented by a GNN

We'll see how to use *Q-learning* to train GNN

Dai, Khalil, Zhang, Dilkina, Song; NeurIPS'17

ML as a toolkit for theory?

E.g., Dai et al. [NeurIPS'17] write that their RL alg discovered: "New and interesting" greedy strategies for MAXCUT and MVC "which **intuitively make sense** but have **not been analyzed** before," thus could be a "good **assistive tool** for discovering new algorithms."

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
 - a. Pointer networks for the traveling salesman problem (TSP)
 - b. Graph neural networks
 - i. Greedy algorithms
 - ii. Integer programming and SAT
 - c. Transformers and LLMs
- 4. Theoretical topics

Integer program (IP)

 $\begin{array}{ll} \max & \boldsymbol{c} \cdot \boldsymbol{z} \\ \text{s.t.} & A \boldsymbol{z} \leq \boldsymbol{b} \\ & \boldsymbol{z} \in \mathbb{Z}^n \end{array}$

Tons of applications:

Integer program (IP) max *c* · *z*

s.t. $Az \leq b$ $z \in \mathbb{Z}^n$

Recursively partitions feasible region Partition organized with a tree data structure

Partitioning policy has a big impact on runtime

Goal: Use a GNN to guide tree search Large improvements over leading open-source solver

GNNs for integer programming

Key insight: IP can be encoded as a graph

 $\begin{array}{ll} \max & 9x_1 + 5x_2 + 6x_3 + 4x_4 \\ \text{s.t.} & 6x_1 + 3x_2 + 5x_3 + 2x_4 \leq 10 & (c_1) \\ & x_3 + x_4 \leq 10 & (c_2) \\ & -x_1 + x_3 \leq 0 & (c_3) \\ & -x_2 + x_4 \leq 0 & (c_4) \\ & x_1, x_2, x_3, x_4 \in \{0, 1\} \end{array}$

Goal: Use a GNN to guide tree search Large improvements over leading open-source solver

SAT

 $(x_1 \lor x_4)$ $\wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_8)$ $\wedge (x_1 \vee x_8 \vee x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \vee x_8 \vee \bar{x}_9)$ $\wedge (x_7 \vee x_8 \vee \overline{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$

SAT: Is there an assignment of $x_1, ..., x_{12} \in \{0,1\}$ such that this formula evaluates to **True**?

Published as a conference paper at ICLR 2019

LEARNING A SAT SOLVER FROM SINGLE-BIT SUPER-VISION

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, David L. Dill Department of Computer Science Stanford University Stanford, CA 94305 {dselsam,mlamm,buenz,pliang,dill}@cs.stanford.edu

Leonardo de Moura Microsoft Research Redmond, WA 98052 leonardo@microsoft.com

Topics

- Graph fundamentals and famous graph algorithms
- GNNs
- Reinforcement learning (Q-learning)
- Integer programming and SAT solving

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
 - a. Pointer networks for the traveling salesman problem (TSP)
 - b. Graph neural networks
 - c. Integer programming
 - d. Transformers and LLMs
- 4. Theoretical topics

- Formulating a problem as an IP can be hard
- Requires a lot of domain expertise

Tons of applications:

LLMs for discrete modeling

max	C·Z
s.t.	$A\mathbf{z} \leq \mathbf{b}$
	$\mathbf{z} \in \mathbb{Z}^n$

- Formulating a problem as an IP can be hard
- Requires a lot of domain expertise
- How to use LLMs to for discrete modeling

Guest lecture by Madeleine Udell

Topics

- Transformers
- Transformers as algorithms E.g., can you teach a transformer to add?
- LLMs for discrete modeling

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
- 4. Theoretical topics
 - i. Statistical guarantees and online algorithm configuration
 - ii. Algorithms with predictions
- 5. Plan for the next 2 weeks

Algorithm configuration

Example: IP solvers (CPLEX, Gurobi) have a **ton** parameters

What's the best **configuration** for the application at hand?

Best configuration for **routing** problems likely not suited for **scheduling**

Modeling the application domain

Problem instances drawn from application-specific dist. ${\cal D}$

E.g., distribution over routing problems

Widely assumed in applied research, e.g.:

Horvitz, Ruan, Gomez, Kautz, Selman, Chickering Xu, Hutter, Hoos, Leyton-Brown He, Daumé, Eisner UAI'01 JAIR'08 NeurIPS'14

And theoretical research on algorithm configuration, e.g.:

Gupta, Roughgarden Balcan

ITCS'16 Book Chapter'20

Automated configuration procedure

- 1. Fix parameterized algorithm
- 2. Receive set of "typical" inputs sampled from unknown ${\cal D}$

3. Return parameter setting $\widehat{\rho}$ with good avg performance

Runtime, solution quality, etc.

Automated configuration procedure

Statistical question: Will $\hat{\rho}$ have good future performance? More formally: Is the expected performance of $\hat{\rho}$ also good?

Automated configuration procedure

- 1. Fix parameterized algorithm
- 2. Receive set of "typical" inputs sampled from unknown \mathcal{D}

3. Return parameter setting $\hat{\rho}$ with good avg performance

Runtime, solution quality, etc.

Model is known as the "**batch-learning** setting" Optimize over a **batch** of input problem instances

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Goal: Compete with best parameter setting in hindsight

- Impossible in the worst case
- Under what conditions is online configuration possible?

Primary challenge

Algorithmic performance is a **volatile** function of parameters **Complex** connection between parameters and performance

Topics

- Statistical learning theory
- Online learning

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
- 4. Theoretical topics
 - i. Statistical guarantees and online algorithm configuration
 - ii. Algorithms with predictions

Algorithms with predictions

Assume you have some **predictions** about your problem, e.g.:

Probability any given element is in a huge database
Kraska et al., SIGMOD'18; Mitzenmacher, NeurIPS'18
In caching, the next time you'll see an element
Lykouris, Vassilvitskii, ICML'18

Main question:

How to use predictions to improve algorithmic performance?

Example: Ski rental problem

- **Problem:** Skier will ski for unknown number of days
 - Can either rent each day for \$1/day or buy for \$b
 - E.g., if ski for 5 days and then buy, total price is 5 + b
- If ski x days, **opt clairvoyant** strategy pays $OPT = min\{x, b\}$
- Breakeven strategy: Rent for b 1 days, then buy

Example: Ski rental problem

Prediction y of number of skiing days, error $\eta = |x - y|$

Algorithm (with parameter $\lambda \in (0,1)$): If $y \ge b$, buy on start of day $\lceil \lambda b \rceil$; else buy on start of day $\left\lceil \frac{b}{\lambda} \right\rceil$

Don't jump the gun...

...but don't wait too long

Theorem: Algorithm has $CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$

- If predictor is perfect ($\eta = 0$), **CR is small** ($\leq 1 + \lambda$)
- No matter how big η is, setting $\lambda = 1$ recovers baseline CR = 2

Design principals

Consistency:

Predictions are perfect \Rightarrow recover offline optimal

Robustness:

Predictions are terrible \Rightarrow no worse than worst-case

Many different applications

Online advertising

Mahdian, Nazerzadeh, Saberi, EC'07; Devanur, Hayes, EC'09; Medina, Vassilvitskii, NeurIPS'17; ...

Caching

Lykouris, Vassilvitskii, ICML'18; Rohatgi, SODA'19; Wei, APPROX-RANDOM'20; ...

Frequency estimation

Hsu, Indyk, Katabi, Vakilian, ICLR'19; ...

Learning low-rank approximations

Indyk, Vakilian, Yuan, NeurIPS'19; ...

Scheduling

Mitzenmacher, ITCS'20; Moseley, Vassilvitskii, Lattanzi, Lavastida, SODA'20; ...

Matching

Antoniadis, Gouleakis, Kleer, Kolev, NeurIPS'20; ...

Queuing

Mitzenmacher, ACDA'21; ...

Covering problems

Bamas, Maggiori, Svensson, NeurlPS'20; ...

algorithms-with-predictions.github.io

Outline

- 1. Applied topics
 - a. Pointer networks for the traveling salesman problem (TSP)
 - b. Graph neural networks
 - c. Transformers and LLMs
- 2. Theoretical topics
 - a. Statistical guarantees and online algorithm configuration
 - b. Algorithms with predictions

Looking forward to getting to know you this quarter!