
Welcome to
Machine Learning for

Discrete Optimization!

Research revolves around
• Machine learning for discrete optimization
• Interface between economics and computation

About me

Ellen Vitercik
Assistant Professor at Stanford
Management Science & Engineering
Computer Science

About me

Grew up in Lincoln, Vermont

BA: Columbia
Math

PhD: Carnegie Mellon
Computer Science

Postdoc: UC Berkeley

Plan for today

1. Introduction
2. Course logistics
3. Overview of course topics

How to integrate machine learning
into discrete optimization?

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?

How to integrate machine learning
into discrete optimization?

Example: Integer programming solvers
Most popular tool for solving combinatorial (& nonconvex) problems

Routing Manufacturing Scheduling Planning Finance

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Algorithm configuration

Best configuration for routing problems
 likely not suited for scheduling

What’s the best configuration for the application at hand?

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?

How to integrate machine learning
into discrete optimization?

Example: Clustering

Many different algorithms
K-means Ward Agglomerative BirchMean shift

How to select the best algorithm for the application at hand?

Algorithm selection in theory

Worst-case analysis has been the main framework for decades
Has led to beautiful, practical algorithms

Worst-case analysis’s approach to algorithm selection:
Select the algorithm that’s best in worst-case scenarios

Worst-case instances rarely occur in practice

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?

How to integrate machine learning
into discrete optimization?

My objective:
Future engineers will have a nuanced understanding of ML’s

power and limitations
when used to solve discrete optimization problems

How to integrate machine learning
into discrete optimization?

How to integrate machine learning
into discrete optimization?

My long-term goal:
Researchers will be empowered with data-driven tools to

Conceive
Prototype
Validate

algorithmic ideas…
and provide theoretical guarantees for their discoveries

How to integrate machine learning
into discrete optimization?

Area is built on a key observation:

In practice, we have data about
the application domain

In practice, we have data about
the application domain

Routing problems a shipping company solves

Clustering problems a biology lab solves

In practice, we have data about
the application domain

Scheduling problems an airline solves

In practice, we have data about
the application domain

In practice, we have data about
the application domain

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?

How can we use this data to guide:

ML + discrete opt: Potential impact

Example: integer programming
• Used heavily throughout industry and science
• Many different ways to incorporate learning into solving
• Solving is very difficult, so ML can make a huge difference

0

0.5

1

0.01 0.1 1 10 100
Fr

ac
tio

n
of

in

st
an

ce
s

Runtime(s)

Best MIP solver
(Gurobi)
Best SAT solver
(Gnovelty+PCL)
SATFC 2.3.1

Example: Spectrum auctions

• In ‘16–’17, FCC held a $19.8 billion radio spectrum auction
• Involves solving huge graph-coloring problems

• SATFC uses algorithm configuration + selection
• Simulations indicate SATFC saved the government billions

Leyton-Brown et al., PNAS’17; Leyton-Brown and Hutter, ICML’19 tutorial

A bit of history

Important research direction in artificial intelligence for decades

Has led to breakthroughs in
• Combinatorial auction winner determination
• SAT
• Constraint satisfaction
• Integer programming
• Many other areas

A bit of history

Algorithm selection
[Rice ‘76]

Data-driven approaches
to algorithm selection
[e.g., Lobjois, Lemaître,

‘98; Gomes, Selman, ‘01]

Runtime prediction
[e.g., Horvitz et al., ‘01]

RL for discrete
optimization

[e.g., Zhang, Dietterich,
‘95]

Machine learning for
algorithm selection
[e.g., Kadioglu et al.,

2010, Leyton-Brown et al.,
2009, Sandholm, 2013, Xu

et al., 2008, 2010, 2011]

Machine learning for
algorithm configuration
[e.g., Hutter et al. ‘09, ‘10,
‘11, Ansótegui et al. ’09,

Sandholm, 2013]

A bit of history

2017:
Around the start of the
material in this course

Course topics
Range of techniques for integrating ML into algorithm design

1. Applied topics
i. Sequence-to-sequence models
ii. Graph neural networks
iii. Transformers and LLMs

2. Theoretical topics
i. Statistical guarantees and online algorithm configuration
ii. Algorithms with predictions

Outline

1. Introduction
2. Course logistics
3. Applied topics
4. Theoretical topics

Course overview

Website: vitercik.github.io/ml4do

On the website, you can find syllabus information like:
• Office hours
• Project policy
• Homework late policy
• Schedule of topics with supplementary readings

vitercik.github.io/ml4algs

Prerequisites

Introductory course in algorithms/optimization
• E.g., CS 161 or MS&E 111/211

Introductory course in machine learning
• E.g., CS 229
• You should be familiar with basic feed-forward neural networks

Class breakdown

10% Participation
45% Homework assignments (3 total)
45% Project

Policies

10% Participation
• In-class participation recorded using in-class polls (starting next class)
• Can’t come class?

• Watch lecture online (posted after class on Canvas)
• Send 100-word summary to instructors [details will be announced]

• Must be set before the start of the next class
• 2 absent passes, no summary necessary, no questions asked

Policies

45% Weekly assignments (3 total)
• Total of 4 late days for assignments, e.g.:

• No penalty if you submit 1 assignment 4 days late
• Or 2 assignments 2 days late, …

• Beyond that, grade goes down by 7 points for every 12 hours it’s late
• E.g., 90% to 83%
• Lasts until week after deadline, at which point assignment will receive grade 0%

• Ask questions on Ed Discussion (linked to on Canvas)
• Fastest way to reach course staff

Policies

Policies intended to cover all
• Sicknesses
• Family events
• Sports events
• …

Use your late days carefully!

Please come talk to me if you’re struggling!

Policies

45% Project
• Write a “mini-paper” as a final project
• Can take one of two forms:
• Research
• Survey

Option 1: Research project

Present progress your group made on a relevant problem

Report should adopt the structure of a research paper
(Not required to reach the standard for academic publishing)

Option 2: Survey project

Choose 2-4 papers discussed in class. For each paper:
1. Summarize a paper that the paper covered in class cites

How does the paper covered in class build on the older paper?
2. Summarize a paper that cites the paper covered in class

How does the more recent paper build on the paper covered in class?
3. Imagine you’re a new researcher working in this area
• Propose an imaginary follow-up project
• Not just based on the paper covered in class…

but only possible due to the existence and success of that paper

Working in groups
• Welcome to work in groups on the final project
• Groups should include:
• At most three students if it’s a research project
• At most two students if it’s a survey project

• Group of two must put twice as much work into project
• Similarly for groups of three

• The paper length for final write-up is:
• 3 if solo-authored,
• 5 if there are two authors, and
• 7 if there are three authors

Milestones

May 1: Submit a short progress report of 1-2 pages
Describe your project and partial progress

June 5: Students will present their final project during class

June 12: Each group will submit their final report

Class format

Whiteboard!
• Studies show that students learn better from whiteboard vs. slides
• Writing down notes helps you learn

• As opposed to just following along in slides
• I automatically go slower

Please ask questions in class!

2-minute anonymous surveys

• Watch out for an email about a 2-min anonymous survey
• Random set of students asked each week
• You’ll be asked 2-3 times during the quarter to fill it out

• It’s so useful for us!

Please use it to tell us:
• What’s going well 😀
• What you’re confused about 🤔
• How we can best help you learn!

OAE

Let me know if you have an OAE letter as soon as possible
Thanks!

Outline

1. Introduction
2. Course logistics
3. Applied topics

a. Pointer networks for the traveling salesman problem (TSP)
b. Graph neural networks
c. Transformers and LLMs

4. Theoretical topics

Traveling salesman problem

• One of the most famous NP-hard problems
• Input: network with 𝑛 nodes, representing a map with 𝑛 cities
• Goal: compute the shortest-distance tour

Should pass through each city exactly once

Routing Manufacturing Planning

Farthest-first heuristic

Many heuristics for TSP

1. Start with subtour {1}
2. Among all cities not in the subtour:

Choose the one that’s farthest from any city in the subtour
3. Insert it into the subtour

Position: where it causes the smallest tour length increase

Farthest-first heuristic

Farthest-first heuristic

Farthest-first heuristic

Farthest-first heuristic

Farthest-first heuristic

Farthest-first heuristic

Heuristics for TSP

Many heuristics for TSP
• Nearest neighbor
• Nearest insertion
• Cheapest insertion
• Random insertion
• Christofides algorithm
• …

Goal: use ML to uncover a better heuristic

Topics

This module: early approaches to DL for discrete optimization
circa ’15-’17

We’ll cover:
• Recurrent neural networks

Long-short term memories (LSTMs)
• Pointer networks: use LSTMs to output a permutation
• Training pointer networks for TSP (policy gradient)

Vinyals, Fortunato, Jaitly, NeurIPS’15; Bello, Pham, Le, Norouzi, Bengio, ICLR’17

Pointer networks

Shows promise that ML can be useful for discrete optimization

But treats cities as a sequence, losing the network structure 🤔

City 1 City 2 City 3 City 4 1st city
in tour

2nd city
in tour

3rd city
in tour

4th city
in tour

Vinyals, Fortunato, Jaitly, NeurIPS’15; Bello, Pham, Le, Norouzi, Bengio, ICLR’17

Outline

1. Introduction
2. Course logistics
3. Applied topics

a. Pointer networks for the traveling salesman problem (TSP)
b. Graph neural networks
c. Transformers and LLMs

4. Theoretical topics

Many types of data are graphs

Slide by Leskovec

Graph terminology

Nodes/vertices

Edges

Today: Modern ML toolbox

Modern DL toolbox is designed for simple sequences & grids

Slide by Leskovec

Why is graph deep learning hard?

Networks are complex
• Arbitrary size and complex topological structure

• No fixed node ordering or reference point
• Often dynamic and have multimodal features

Networks

versus

Images

Text

Figure by Leskovec

GNN motivation

Special type of NN architecture for tasks involving graphs
How to utilize relational structure for better prediction?

GNN overview

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN overview

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

Outline

1. Introduction
2. Course logistics
3. Applied topics

a. Pointer networks for the traveling salesman problem (TSP)
b. Graph neural networks

i. Greedy algorithms
ii. Integer programming and SAT

c. Transformers and LLMs
4. Theoretical topics

Greedy algorithms

Many graph problems are NP-hard

Greedy algorithms: a common type of fast heuristic algorithm

Example: minimum vertex cover

Find smallest vertex subset such that each edge is covered

Example application:
Installing cameras in corners covering all hallways on a floor

Example: minimum vertex cover

Find smallest vertex subset such that each edge is covered

Classic greedy algorithm:
Greedily add vertices of edge with maximum degree sum

Degree
sum: 6

Degree
sum: 7Degree: # of edges adjacent to a vertex

Example: minimum vertex cover

Find smallest vertex subset such that each edge is covered

Classic greedy algorithm:
Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

Example: TSP

1. Among all cities not in the subtour:
Choose the one that’s farthest from any city in the subtour

2. Insert it into the subtour Scoring function that guides greedy algorithm

RL for combinatorial optimization

Goal: learn a scoring function to guide greedy algorithm

We’ll see how to use Q-learning to train GNN

Represented by a GNN

Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17

ML as a toolkit for theory?

E.g., Dai et al. [NeurIPS’17] write that their RL alg discovered:
“New and interesting” greedy strategies for MAXCUT and MVC
“which intuitively make sense but have not been analyzed before,”
thus could be a “good assistive tool for discovering new algorithms.”

Outline

1. Introduction
2. Course logistics
3. Applied topics

a. Pointer networks for the traveling salesman problem (TSP)
b. Graph neural networks

i. Greedy algorithms
ii. Integer programming and SAT

c. Transformers and LLMs
4. Theoretical topics

Integer programming

Integer program (IP)
max 𝒄 & 𝒛
s.t. 𝐴𝒛 ≤ 𝒃
 𝒛 ∈ ℤ!

Tons of applications:

Routing Manufacturing Scheduling Planning Finance

Integer programming

Integer program (IP)
max 𝒄 & 𝒛
s.t. 𝐴𝒛 ≤ 𝒃
 𝒛 ∈ ℤ!

IP optimal solution

Recursively partitions feasible region
Partition organized with a tree data structure

Partitioning policy has a big impact on runtime

Goal: Use a GNN to guide tree search
Large improvements over leading open-source solver

Integer programming

GNNs for integer programming
Key insight: IP can be encoded as a graph

max 9𝑥! + 5𝑥" + 6𝑥# + 4𝑥$
s.t. 6𝑥! + 3𝑥" + 5𝑥# + 2𝑥$ ≤ 10 𝑐!
 𝑥# + 𝑥$ ≤ 10 𝑐"
 −𝑥! + 𝑥# ≤ 0 𝑐#
 −𝑥" + 𝑥$ ≤ 0 𝑐$
 𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ 0,1

Goal: Use a GNN to guide tree search
Large improvements over leading open-source solver

𝑐!

Constraints Variables

𝑐"

𝑐#

𝑐$

𝑥!

𝑥"

𝑥#

𝑥$

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurIPS’19

SAT

∧ 𝑥" ∨ 𝑥# 	
∧ 𝑥" ∨ �̅�$ ∨ �̅�% 	
∧ 𝑥" ∨ 𝑥% ∨ 𝑥"& 	
∧ 𝑥& ∨ 𝑥"" 	
∧ �̅�' ∨ �̅�$ ∨ 𝑥(
∧ �̅�' ∨ 𝑥% ∨ �̅�(
∧ 𝑥' ∨ 𝑥% ∨ �̅�") 	
∧ 𝑥' ∨ 𝑥") ∨ �̅�"&

SAT: Is there an assignment of 𝑥", … , 𝑥"& ∈ {0,1}
such that this formula evaluates to True?

Topics

• Graph fundamentals and famous graph algorithms

• GNNs

• Reinforcement learning (Q-learning)

• Integer programming and SAT solving

Outline

1. Introduction
2. Course logistics
3. Applied topics

a. Pointer networks for the traveling salesman problem (TSP)
b. Graph neural networks
c. Integer programming
d. Transformers and LLMs

4. Theoretical topics

Integer programming

max 𝒄 & 𝒛
s.t. 𝐴𝒛 ≤ 𝒃
 𝒛 ∈ ℤ!

Tons of applications:

Routing Manufacturing Scheduling Planning Finance

• Formulating a problem as an IP can be hard
• Requires a lot of domain expertise

LLMs for discrete modeling

max 𝒄 & 𝒛
s.t. 𝐴𝒛 ≤ 𝒃
 𝒛 ∈ ℤ!

• Formulating a problem as an IP can be hard
• Requires a lot of domain expertise
• How to use LLMs to for discrete modeling

Guest lecture by
Madeleine Udell

Topics

• Transformers

• Transformers as algorithms
E.g., can you teach a transformer to add?

• LLMs for discrete modeling

Outline

1. Introduction
2. Course logistics
3. Applied topics
4. Theoretical topics

i. Statistical guarantees and online algorithm configuration
ii. Algorithms with predictions

5. Plan for the next 2 weeks

Example: IP solvers (CPLEX, Gurobi) have a ton parameters

Algorithm configuration

Best configuration for routing problems
 likely not suited for scheduling

What’s the best configuration for the application at hand?

Modeling the application domain
Problem instances drawn from application-specific dist. 𝒟

Widely assumed in applied research, e.g.:
Horvitz, Ruan, Gomez, Kautz, Selman, Chickering UAI’01
Xu, Hutter, Hoos, Leyton-Brown JAIR’08
He, Daumé, Eisner NeurIPS’14

And theoretical research on algorithm configuration, e.g.:
Gupta, Roughgarden ITCS’16
Balcan Book Chapter’20

E.g., distribution over routing problems

Automated configuration procedure
1. Fix parameterized algorithm
2. Receive set of “typical” inputs sampled from unknown 𝒟

3. Return parameter setting 6𝝆 with good avg performance

Earlier question: How to find 6𝝆 with good avg performance?
Hutter et al. [JAIR’09, LION’11], Ansótegui et al. [CP’09], Kleinberg et al. [NeurIPS’19, IJCAI’17],
Weisz et al. [ICML’19, NeurIPS’19]; Balcan, Sandholm, V [AAAI’20], …

Runtime, solution quality, etc.

Problem instance 1 Problem instance 2

Automated configuration procedure

1. Fix parameterized algorithm/mechanism
2. Receive set of “typical” inputs sampled from unknown 𝒟

3. Return parameter setting 6𝝆 with good avg performance
Statistical question: Will 6𝝆 have good future performance?
More formally: Is the expected performance of 6𝝆 also good?

Seen Unseen ?
New problem instanceProblem instance 1 Problem instance 2

Gupta, Roughgarden, ITCS’16; Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Automated configuration procedure
1. Fix parameterized algorithm
2. Receive set of “typical” inputs sampled from unknown 𝒟

3. Return parameter setting 6𝝆 with good avg performance

Model is known as the “batch-learning setting”
 Optimize over a batch of input problem instances

Runtime, solution quality, etc.

Problem instance 1 Problem instance 2

Day 1: 𝝆! Day 2: 𝝆" Day 3: 𝝆#

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Goal: Compete with best parameter setting in hindsight
• Impossible in the worst case
• Under what conditions is online configuration possible?

Gupta and Roughgarden, ITCS’16; Cohen-Addad, Kanade AISTATS’17; Balcan, Dick, Vitercik, FOCS’18; …

Primary challenge

Algorithmic performance is a volatile function of parameters
Complex connection between parameters and performance

Integer programming solver parameter

Solver search
tree size

Balcan, Prasad, Sandholm, Vitercik, NeurIPS’21

Topics

• Statistical learning theory

• Online learning

Outline

1. Introduction
2. Course logistics
3. Applied topics
4. Theoretical topics

i. Statistical guarantees and online algorithm configuration
ii. Algorithms with predictions

Assume you have some predictions about your problem, e.g.:
Probability any given element is in a huge database
 Kraska et al., SIGMOD’18; Mitzenmacher, NeurIPS’18
In caching, the next time you’ll see an element
 Lykouris, Vassilvitskii, ICML’18

Main question:
How to use predictions to improve algorithmic performance?

Algorithms with predictions

Example: Ski rental problem

• Problem: Skier will ski for unknown number of days
• Can either rent each day for $1/day or buy for $𝑏
• E.g., if ski for 5 days and then buy, total price is 5 + 𝑏

• If ski 𝑥 days, opt clairvoyant strategy pays OPT = min 𝑥, 𝑏
• Breakeven strategy: Rent for 𝑏 − 1 days, then buy

CR = $%&
'() =

*𝟏 !"# , -./,- 𝟏 !$#

012 *,- < 2 (best deterministic)

Competitive ratio

Example: Ski rental problem
Prediction 𝑦 of number of skiing days, error 𝜂 = |𝑥 − 𝑦|

Algorithm (with parameter 𝜆 ∈ (0,1)):
If 𝑦 ≥ 𝑏, buy on start of day 𝜆𝑏 ; else buy on start of day *

+

Theorem: Algorithm has CR ≤ min ",+
+
, 1 + 𝜆 + -

".+ /01
• If predictor is perfect 𝜂 = 0 , CR is small ≤ 1 + 𝜆
• No matter how big 𝜂 is, setting 𝜆 = 1 recovers baseline CR = 2

Don’t jump the gun… …but don’t wait too long

Purohit, Svitkina, Kumar, NeurIPS’18

Design principals

Consistency:
Predictions are perfect ⇒ recover offline optimal

Robustness:
Predictions are terrible ⇒ no worse than worst-case

Lykouris, Vassilvitskii, ICML’18

Many different applications

algorithms-with-predictions.github.io

Online advertising
Mahdian, Nazerzadeh, Saberi, EC’07;
Devanur, Hayes, EC’09; Medina,
Vassilvitskii, NeurIPS’17; …

Caching
Lykouris, Vassilvitskii, ICML’18; Rohatgi,
SODA’19; Wei, APPROX-RANDOM’20; …

Frequency estimation
Hsu, Indyk, Katabi, Vakilian, ICLR’19; …

Learning low-rank approximations
Indyk, Vakilian, Yuan, NeurIPS’19; …

Scheduling
Mitzenmacher, ITCS’20; Moseley,
Vassilvitskii, Lattanzi, Lavastida, SODA’20; …

Matching
Antoniadis, Gouleakis, Kleer, Kolev,
NeurIPS’20; …

Queuing
Mitzenmacher, ACDA’21; …

Covering problems
Bamas, Maggiori, Svensson, NeurIPS’20; …

Outline

1. Applied topics
a. Pointer networks for the traveling salesman problem (TSP)
b. Graph neural networks
c. Transformers and LLMs

2. Theoretical topics
a. Statistical guarantees and online algorithm configuration
b. Algorithms with predictions

Looking forward to getting to know you this quarter!

