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How to integrate machine learning
into discrete optimization?

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?
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Example: Integer programming solvers
Most popular tool for solving combinatorial (& nonconvex) problems

Routing Manufacturing Scheduling Planning Finance

Algorithm configuration
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IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Algorithm configuration



IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Algorithm configuration

Best configuration for routing problems
    likely not suited for scheduling

What’s the best configuration for the application at hand?
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Example: Clustering

Many different algorithms
K-means Ward Agglomerative BirchMean shift

How to select the best algorithm for the application at hand?
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Algorithm selection in theory

Worst-case analysis has been the main framework for decades
Has led to beautiful, practical algorithms

Worst-case analysis’s approach to algorithm selection:
Select the algorithm that’s best in worst-case scenarios

Worst-case instances rarely occur in practice
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How to integrate machine learning
into discrete optimization?

Long-term goal: 
Researchers will be empowered with data-driven tools to 

Conceive
Prototype
Validate

algorithmic ideas…
and provide theoretical guarantees for their discoveries
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How to integrate machine learning
into discrete optimization?

Research area is built on a key observation:

In practice, we have data about 
the application domain
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In practice, we have data about 
the application domain

Routing problems a shipping company solves



Clustering problems a biology lab solves

In practice, we have data about 
the application domain



Scheduling problems an airline solves

In practice, we have data about 
the application domain



In practice, we have data about 
the application domain

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?

How can we use this data to guide:
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ML + discrete opt: Potential impact

Example: integer programming
• Used heavily throughout industry and science
• Many different ways to incorporate learning into solving
• Solving is very difficult, so ML can make a huge difference
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Example: Spectrum auctions

• In ‘16–’17, FCC held a $19.8 billion radio spectrum auction
• Involves solving huge graph-coloring problems

• SATFC uses algorithm configuration + selection
• Simulations indicate SATFC saved the government billions
Ellen Vitercik, AAAI’24 tutorial Leyton-Brown et al., PNAS’17; Leyton-Brown and Hutter, ICML’19 tutorial



A bit of history

Important research direction in artificial intelligence for decades

Has led to breakthroughs in
• Combinatorial auction winner determination
• SAT
• Constraint satisfaction
• Integer programming
• Many other areas

Ellen Vitercik, AAAI’24 tutorial



A bit of history

Algorithm selection
[Rice ‘76]

Data-driven approaches 
to algorithm selection
[e.g., Lobjois, Lemaître, 

‘98; Gomes, Selman, ‘01]

Runtime prediction
[e.g., Horvitz et al., ‘01]

RL for discrete 
optimization

[e.g., Zhang, Dietterich, 
‘95]

Machine learning for 
algorithm selection
[e.g., Kadioglu et al., 

2010, Leyton-Brown et al., 
2009, Sandholm, 2013, Xu 

et al., 2008, 2010, 2011]

Machine learning for 
algorithm configuration
[e.g., Hutter et al. ‘09, ‘10, 
‘11, Ansótegui et al. ’09, 

Sandholm, 2013]
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A bit of history

2017:
Around the start of the 
material in this tutorial
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Plan for tutorial

Applied techniques
a. Graph neural networks
b. Reinforcement learning

Theoretical guarantees
a. Statistical guarantees for algorithm configuration
b. Algorithms with predictions

1

2

Where much of my research has been
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Outline (applied techniques)

1. GNNs overview
2. Integer programming with GNNs
3. Neural algorithmic alignment
4. Learning greedy heuristics with RL
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GNN motivation

Main question:
How to utilize relational structure for better prediction?
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Today: Modern ML toolbox

Modern DL toolbox is designed for simple sequences & grids
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Why is graph deep learning hard?

Networks are complex
• Arbitrary size and complex topological structure

• No fixed node ordering or reference point
• Often dynamic and have multimodal features

Networks

versus

Images

Text

Figure by LeskovecEllen Vitercik, AAAI’24 tutorial



Different types of tasks

Graph-level prediction

Node level

Community (subgraph) level

Edge level

Figure by LeskovecEllen Vitercik, AAAI’24 tutorial



Prediction with graphs: Examples

Graph-level tasks:
E.g., for a molecule represented as a graph, could predict:
• What the molecule smells like
• Whether it will bind to a receptor implicated in a disease

Figure by Sanchez-Lengeling et al. [’21]Ellen Vitercik, AAAI’24 tutorial



Prediction with graphs: Examples

Node-level tasks:
E.g., political affiliations of users in a social network

Figure by Sanchez-Lengeling et al. [’21]Ellen Vitercik, AAAI’24 tutorial



Prediction with graphs: Examples

Edge-level tasks: E.g.:
• Suggesting new friends
• Recommendations on Amazon, Netflix, …
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Example: Traffic routing

E.g., Google maps
deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
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Example: Learning to simulate physics

Nodes: Particles
Edges: Interaction between particles

Goal: Predict how a graph will evolve over time
Ellen Vitercik, AAAI’24 tutorial



Example: Combinatorial optimization

Replace full algorithm or learn steps (e.g., branching decision)

maximize 𝒄 " 𝒛 
subject to 𝐴𝒛 ≤ 𝒃
  𝒛 ∈ ℤ!

Ellen Vitercik, AAAI’24 tutorial



Graph neural networks: First step

• Design features for nodes/links/graphs
• Obtain features for all training data

Figure by LeskovecEllen Vitercik, AAAI’24 tutorial



Graph neural networks: Objective

Idea:
1. Encode each node and its neighborhood with embedding
2. Aggregate set of node embeddings into graph embedding
3. Use embeddings to make predictions

Figure by JegelkaEllen Vitercik, AAAI’24 tutorial
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Encoding neighborhoods: General form

𝒉"
# = 𝒙" (feature representation for node 𝑣)

In each round 𝑘 ∈ 𝐾 , for each node 𝑣:
1.  Aggregate over neighbors

𝒎! "
# = AGGREGATE # 𝒉$

#%& : 𝑢 ∈ 𝑁 𝑣

Neighborhood of 𝑣
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Encoding neighborhoods: General form

𝒉"
# = 𝒙" (feature representation for node 𝑣)

In each round 𝑘 ∈ 𝐾 , for each node 𝑣:
1.  Aggregate over neighbors

𝒎! "
# = AGGREGATE # 𝒉$

#%& : 𝑢 ∈ 𝑁 𝑣
2.  Update current node representation

𝒉"
# = COMBINE # 𝒉"

#%& ,𝒎! "
#
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The basic GNN
[Merkwirth and Lengauer ‘05; Scarselli et al. ‘09]

𝒎$ " = AGGREGATE 𝒉%: 𝑢 ∈ 𝑁 𝑣 = 8
%∈$(")

𝒉%

COMBINE 𝒉" ,𝒎$(") = 𝜎 𝑊)*+,𝒉" +𝑊-*./0𝒎$ " + 𝒃

Trainable parameters

Non-linearity (e.g., 
tanh or ReLU)

Figure by JegelkaEllen Vitercik, AAAI’24 tutorial



Aggregation functions

𝒎$ " = AGGREGATE 𝒉%: 𝑢 ∈ 𝑁 𝑣 = 8
%∈$(")

𝒉%

Figure by Jegelka

C
%∈$(")

𝒉%

Other element-wise aggregators, e.g.:
Maximization, averaging

Ellen Vitercik, AAAI’24 tutorial



Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Figures by Leskovec

A

B

C

D

A

B

D

C

F

E

Target 
node

Input graph

Ellen Vitercik, AAAI’24 tutorial



Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Figures by Leskovec

A

B

C

D

A

C

A

B

D

C

F

E

Target 
node

Input graph

Ellen Vitercik, AAAI’24 tutorial



Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Figures by Leskovec
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Use the same aggregation functions for all nodes

Node embeddings unrolled

Figures by Leskovec
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Target 
node

Input graph

Shared parameters

Can generate encodings for
previously unseen nodes & graphs!

Shared parameters
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Outline (applied techniques)

1. GNNs overview
2. Integer programming with GNNs
3. Neural algorithmic alignment
4. Learning greedy heuristics with RL

Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19
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Integer programming solvers

Most popular tool for solving combinatorial problems

Ellen Vitercik, AAAI’24 tutorial

Routing Manufacturing Scheduling Planning Finance



Integer and linear programming

Integer program (IP) 
max 𝒄 " 𝒛 
s.t. 𝐴𝒛 ≤ 𝒃
 𝒛 ∈ ℤ!

Linear program (LP)
max 𝒄 " 𝒛 
s.t. 𝐴𝒛 ≤ 𝒃
  𝒛 ∈ ℤ! LP provides valuable guidance in B&B

LP optimal solution

IP optimal solution
NP-hard

Efficiently 
solvable

Ellen Vitercik, AAAI’24 tutorial



max (40, 60, 10, 10, 3, 20, 60) 1 𝒛
s.t. 40, 50, 30, 10, 10, 40, 30 1 𝒛 ≤ 100
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Prune node if:
won’t find better solution along branch

Branch
and

bound
(B&B)
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section:
Variable 
selection
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Variable selection policies (VSPs)

Score-based variable selection policies:
At leaf 𝑄, branch on variable 𝑧1 maximizing 𝐬𝐜𝐨𝐫𝐞 𝑸, 𝒊 ∈ ℝ

Many options! Little known about which to use when
Gauthier, Ribière, Math. Prog. ‘77; Beale, Annals of Discrete Math. ‘79; Linderoth, Savelsbergh, 
INFORMS JoC ’99; Achterberg, Math. Prog. Computation ’09; Gilpin, Sandholm, Disc. Opt. ‘11; …
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Variable selection policy example

At node 𝑗 with LP objective value 𝑧(𝑗):
• Let 𝑧12(𝑗) be the LP objective value after setting 𝑥1 = 1
• Let 𝑧13(𝑗) be the LP objective value after setting 𝑥1 = 0

VSP example: Branch on the variable 𝑥1 that maximizes
𝑧 𝑗 − 𝑧12 𝑗 𝑧 𝑗 − 𝑧13 𝑗

In more detail, scoring rule is max 𝑧 𝑗 − 𝑧() 𝑗 , 10*' ⋅ max 𝑧 𝑗 − 𝑧(* 𝑗 , 10*' :
If 𝑧 𝑗 − 𝑧() 𝑗 = 0, would lose information stored in 𝑧 𝑗 − 𝑧(* 𝑗 )

Ellen Vitercik, AAAI’24 tutorial



Strong branching

Challenge: Computing 𝑧13 𝑗 , 𝑧12(𝑗) requires solving a lot of LPs
• Computing all LP relaxations referred to as strong-branching
• Very time intensive

Pro: Strong branching leads to small search trees

Idea: Train an ML model to imitate strong-branching
Khalil et al. [AAAI’16], Alvarez et al. [INFORMS JoC’17], Hansknecht et al. [arXiv’18]
This section: using a GNN

Ellen Vitercik, AAAI’24 tutorial Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19



Outline (applied techniques)

1. GNNs overview
2. Integer programming with GNNs

i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

3. Neural algorithmic alignment
4. Learning greedy heuristics with RL
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Problem formulation

Goal: learn a policy 𝜋 𝑥1 𝑠4

Approach (imitation learning):
• Run strong branching on training set of instances
• Collect dataset of (state, variable) pairs 𝑆 = 𝑠1 , 𝑥1∗ 156

$

• Learn policy 𝜋𝜽 with training set 𝑆

Probability of branching on variable 𝑥( when solver is in state 𝑠+

Ellen Vitercik, AAAI’24 tutorial Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19



State encoding
State 𝑠4 of B&B encoded as a bipartite graph

with node and edge features

max 9𝑥6 + 5𝑥8 + 6𝑥9 + 4𝑥:
s.t. 6𝑥6 + 3𝑥8 + 5𝑥9 + 2𝑥: ≤ 10 𝑐6
 𝑥9 + 𝑥: ≤ 10  𝑐8
 −𝑥6 + 𝑥9 ≤ 0  𝑐9
 −𝑥8 + 𝑥: ≤ 0  𝑐:
 𝑥6, 𝑥8, 𝑥9, 𝑥: ∈ 0,1

𝑐"

Constraints Variables

𝑐#

𝑐$

𝑐&

𝑥"

𝑥#

𝑥$

𝑥&

Ellen Vitercik, AAAI’24 tutorial Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19



State encoding
State 𝑠4 of B&B encoded as a bipartite graph

with node and edge features

• Edge feature: constraint coefficient
• Example node features:
• Constraints:

• Cosine similarity with objective
• Tight in LP solution? 

• Variables:
• Objective coefficient
• Solution value equals upper/lower bound?

𝑐"

Constraints Variables

𝑐#

𝑐$

𝑐&

𝑥"

𝑥#

𝑥$

𝑥&
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GNN structure

1. Pass from variables → constraints
𝒄1 ← 𝑓; 𝒄1 , 8

<: 1,< ∈?

𝑔; 𝒄1 , 𝒗< , 𝒆1<

𝑐"

Constraints Variables

𝑐#

𝑐$

𝑐&

𝑥"

𝑥#

𝑥$

𝑥&

Constraint 
features

2-layer MLP with relu 
activations

Variable 
features

Edge 
features
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GNN structure

1. Pass from variables → constraints
𝒄1 ← 𝑓; 𝒄1 , 8

<: 1,< ∈?

𝑔; 𝒄1 , 𝒗< , 𝒆1<

2. Pass from constraints → variables
𝒗< ← 𝑓@ 𝒗< , 8

1: 1,< ∈?

𝑔@ 𝒄1 , 𝒗< , 𝒆1<
𝑐"

Constraints Variables

𝑐#

𝑐$

𝑐&

𝑥"

𝑥#

𝑥$

𝑥&
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GNN structure

3. Compute distribution over variables

𝑐"

Constraints Variables

𝑐#

𝑐$

𝑐&

𝑥"

𝑥#

𝑥$

𝑥&

2-layer MLP 
+ softmax

𝜋 𝑥" 𝑠+

𝜋 𝑥& 𝑠+

𝜋 𝑥# 𝑠+

𝜋 𝑥$ 𝑠+
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Outline (applied techniques)

1. GNNs overview
2. Integer programming with GNNs

i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

3. Neural algorithmic alignment
4. Learning greedy heuristics with RL
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Reliability pseudo-cost branching (RPB)

Rough idea:
• Goal: estimate 𝑧 𝑗 − 𝑧12 𝑗  w/o solving the LP with 𝑥1 = 1
• Estimate = avg change after setting 𝑥1 = 1 elsewhere in tree

This is the “pseudo-cost”
• “Reliability”: do strong branching if estimate is “unreliable”

E.g., early in the tree
 

Default branching rule of SCIP (leading open-source solver):
dΔ12 𝑗 ⋅ dΔ13 𝑗

Estimate of 𝑧 𝑗 − 𝑧() 𝑗 Estimate of 𝑧 𝑗 − 𝑧(* 𝑗

Technically,
max FΔ() 𝑗 , 10*' ⋅ max FΔ(* 𝑗 , 10*'

Ellen Vitercik, AAAI’24 tutorial Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19



Learning to rank approaches

Predict which variable strong branching would rank highest
using models other than GNNs

• Khalil et al. [AAAI’16]:
Use learning-to-rank algorithm SVMrank [Joachims, KDD’06]

• Hansknecht et al. [arXiv’18]:
Use learning-to-rank alg lambdaMART [Burges, Learning’10]

• Alvarez et al. [INFORMS JoC’17]:
Use regression trees

Ellen Vitercik, AAAI’24 tutorial Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19



Outline (applied techniques)

1. GNNs overview
2. Integer programming with GNNs

i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

3. Neural algorithmic alignment
4. Learning greedy heuristics with RL
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Model Time Wins Nodes
Full strong branching 17.30±6.1% 0/100 17±13.7%
Reliability pseudo-cost 8.98±4.8% 0/100 54±20.8%
Regression trees 9.28±4.9% 0/100 187±9.4%
SVMrank 8.10±3.8% 1/100 165±8.2%
lambdaMART 7.19±4.2% 14/100 167±9.0%
GNN 6.59±3.1% 85/100 134±7.6%

Set covering instances

Train and test on “easy” instances: 1000 columns, 500 rows

Runtime in seconds with a timeout of 1 hour

Number instances with fastest runtime / number solved

Size of B&B tree

Ellen Vitercik, AAAI’24 tutorial Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19



Set covering instances

Train and test on “easy” instances: 1000 columns, 500 rows

Model Time Wins Nodes
Full strong branching 17.30±6.1% 0/100 17±13.7%
Reliability pseudo-cost 8.98±4.8% 0/100 54±20.8%
Regression trees 9.28±4.9% 0/100 187±9.4%
SVMrank 8.10±3.8% 1/100 165±8.2%
lambdaMART 7.19±4.2% 14/100 167±9.0%
GNN 6.59±3.1% 85/100 134±7.6%
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Set covering instances

GNN is faster than SCIP default VSP (reliability pseudo-cost)

Model Time Wins Nodes
Full strong branching 17.30±6.1% 0/100 17±13.7%
Reliability pseudo-cost 8.98±4.8% 0/100 54±20.8%
Regression trees 9.28±4.9% 0/100 187±9.4%
SVMrank 8.10±3.8% 1/100 165±8.2%
lambdaMART 7.19±4.2% 14/100 167±9.0%
GNN 6.59±3.1% 85/100 134±7.6%

Ellen Vitercik, AAAI’24 tutorial Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19



Set covering instances

Train: “easy”; test: “hard” instances w/ 1000 columns, 2000 rows

Model Time Wins Nodes
Full strong branching Timed out 0/0 N/A
Reliability pseudo-cost 1677.98±3.0% 4/65 47299±4.9%
Regression trees 2869.21±3.2% 0/35 59013±9.3%
SVMrank 2389.92±2.3% 0/47 42120±5.4%
lambdaMART 2165.96±2.0% 0/54 45319±3.4%
GNN 1489.91±3.3% 66/70 29981±4.9%

Ellen Vitercik, AAAI’24 tutorial Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19



Set covering instances

Performance generalizes to larger instances

Model Time Wins Nodes
Full strong branching Timed out 0/0 N/A
Reliability pseudo-cost 1677.98±3.0% 4/65 47299±4.9%
Regression trees 2869.21±3.2% 0/35 59013±9.3%
SVMrank 2389.92±2.3% 0/47 42120±5.4%
lambdaMART 2165.96±2.0% 0/54 45319±3.4%
GNN 1489.91±3.3% 66/70 29981±4.9%

Ellen Vitercik, AAAI’24 tutorial Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19



Set covering instances

Similar results for auction design & facility location problems

Ellen Vitercik, AAAI’24 tutorial Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19



Outline (applied techniques)

1. GNNs overview
2. Integer programming with GNNs

i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

3. Neural algorithmic alignment
4. Learning greedy heuristics with RL
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Additional research

CPU-friendly approaches
Gupta et al., NeurIPS’20

Bipartite representation inspired many follow-ups
Nair et al., ‘20; Sonnerat et al., ‘21; Wu et al., NeurIPS’21; Huang et al. ICML’23; …

Survey on Combinatorial Optimization & Reasoning w/ GNNs:
Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR’23

Ellen Vitercik, AAAI’24 tutorial



Outline (applied techniques)

1. GNNs overview
2. Integer programming with GNNs
3. Neural algorithmic alignment
4. Learning greedy heuristics with RL

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20
Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR’23
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Problem-solving approaches

+   Operate on raw inputs
+   Generalize on noisy conditions
+   Models reusable across tasks
- Require big data
- Unreliable when extrapolating
- Lack of interpretability

+   Trivially strong generalization
+   Compositional (subroutines)
+   Guaranteed correctness
+   Interpretable operations
- Input must match spec
- Not robust to task variations

Is it possible to get the best of both worlds?

Ellen Vitercik, AAAI’24 tutorial Slide by Veličković



GNNs + combinatorial optimization

Lots of awesome research! E.g.,

𝑥" ∨ 𝑥# 	
∧

𝑥" ∨ �̅�$ 	

Traveling salesman problem
E.g., Vinyals et al., ‘15; Joshi et al., ’19; …

Boolean satisfiability
E.g., Selsam et al., ‘19; Cameron et al., ’20; …

This section: Neural graph algorithm execution
Aligns well with theoretical sections of this tutorial

Ellen Vitercik, AAAI’24 tutorial



Neural graph algorithm execution

Key observation: Many algorithms share related subroutines
E.g. Bellman-Ford & BFS enumerate sets of edges adjacent to a node

Neural graph algorithm execution
💡Learn several algorithms simultaneously

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20

If we already have a classical algorithm for the problem…
Why not just run that algorithm?

Will answer soon, but first: a few words on the pipeline

Ellen Vitercik, AAAI’24 tutorial



Neural algorithmic pipeline

Output 𝒚(-)Input 𝒙(")

Encoder network 𝒇
• E.g., makes sure input is in correct dimension for next step

Ellen Vitercik, AAAI’24 tutorial Figure by Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR’23



Neural algorithmic pipeline

Output 𝒚(-)Input 𝒙(")

Processor network 𝑷
• Graph neural network
• Run multiple times (termination determined by a NN)

Ellen Vitercik, AAAI’24 tutorial Figure by Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR’23



Neural algorithmic pipeline

Output 𝒚(-)Input 𝒙(")

Decoder network 𝒈
• Transform’s GNNs output into algorithmic output

Ellen Vitercik, AAAI’24 tutorial Figure by Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR’23



Neural algorithmic pipeline

Output 𝒚(-)Input 𝒙(")

Multi-task approach
• Learn a single processor network 𝑃 for related problems
• Learn task-specific encoder, decoder functions 𝑓A, 𝑔A

Ellen Vitercik, AAAI’24 tutorial Figure by Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR’23



Neural algorithmic pipeline

Ellen Vitercik, AAAI’24 tutorial Figure by Ibarz et al., LoG’22



Why use GNNs for algorithm design?

If we’re just teaching a NN to imitate a classical algorithm…
Why not just run that algorithm?

Ellen Vitercik, AAAI’24 tutorial



Why use GNNs for algorithm design?

Classical algorithms are designed with abstraction in mind
Enforce their inputs to conform to stringent preconditions

However, we design algorithms to solve real-world problems!

Natural inputs

Ellen Vitercik, AAAI’24 tutorial Slide by Veličković



Why use GNNs for algorithm design?

• Assume we have real-world inputs
…but algorithm only admits abstract inputs

• Could try manually converting from one input to another

👩💻
Natural inputs Abstract inputs Abstract outputs

Ellen Vitercik, AAAI’24 tutorial Slide by Veličković



Why use GNNs for algorithm design?

• Alternatively, replace human feature extractor with NN
• Still apply same combinatorial algorithm

• Issue: algorithms typically perform discrete optimization
• Doesn’t play nicely with gradient-based optimization of NNs

Natural inputs Abstract inputs Abstract outputs

Ellen Vitercik, AAAI’24 tutorial Slide by Veličković



Why use GNNs for algorithm design?

• Second (more fundamental) issue: data efficiency
• Real-world data is often incredibly rich
• We still have to compress it down to scalar values

• The algorithmic solver commits to using this scalar
Assumes it is perfect!

Natural inputs Abstract inputs Abstract outputs

Ellen Vitercik, AAAI’24 tutorial Slide by Veličković



Why use GNNs for algorithm design?

• Second (more fundamental) issue: data efficiency
• Real-world data is often incredibly rich
• We still have to compress it down to scalar values

• The algorithmic solver commits to using this scalar
Assumes it is perfect!

If there’s insufficient training data to estimate the scalars:
• Alg will give a perfect solution
• …but in a suboptimal environment

Ellen Vitercik, AAAI’24 tutorial Slide by Veličković



Neural algorithmic pipeline

1. On abstract inputs, learn encode-process-decode functions

Abstract outputs 
N𝑦 ≈ 𝑔 𝑃 𝑓 𝑥Abstract inputs �̅�

Ellen Vitercik, AAAI’24 tutorial Figure by Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR’23



Neural algorithmic pipeline

Abstract outputs 
N𝑦 ≈ 𝑔 𝑃 𝑓 𝑥Abstract inputs �̅�

After training on abstract inputs, processor 𝑃:
1. Admits useful gradients
2. Operates over high-dim latent space (better use of data)

Ellen Vitercik, AAAI’24 tutorial Figure by Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR’23



Neural algorithmic pipeline

2. Set up encode-decode functions for natural inputs/outputs

Abstract inputs �̅�
Abstract outputs 
N𝑦 ≈ 𝑔 𝑃 𝑓 𝑥

Natural outputs 𝑦Natural inputs 𝑥

Ellen Vitercik, AAAI’24 tutorial Figure by Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR’23



Neural algorithmic pipeline

3. Learn parameters using loss that compares k𝑔 𝑃 l𝑓 𝑥  to 𝑦

Abstract inputs �̅�
Abstract outputs 
N𝑦 ≈ 𝑔 𝑃 𝑓 𝑥

Natural outputs 𝑦Natural inputs 𝑥

Ellen Vitercik, AAAI’24 tutorial Figure by Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR’23



Outline (applied techniques)

1. GNNs overview
2. Integer programming with GNNs
3. Neural algorithmic alignment

i. Motivation
ii. Example algorithms
iii. Experiments
iv. Understanding max-aggregation
v. Additional research

4. Learning greedy heuristics with RL
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Breadth-first search

• Source node 𝑠

• Initial input 𝑥1
(6) = n1 if	𝑖 = 𝑠	

0 if	𝑖	 ≠ 𝑠
• Node is reachable from 𝑠 if any of its neighbors are reachable:

𝑥1
(426) =

1 if	𝑥1
(4) = 1.	

1 if	∃𝑗	s. t. 𝑗, 𝑖 ∈ 𝐸	and	𝑥<
4 = 1

0 else	

• Algorithm output at round 𝑡: 𝑦1
(4) = 𝑥1

426

Ellen Vitercik, AAAI’24 tutorial



Bellman-Ford (shortest path)

• Source node 𝑠

• Initial input 𝑥1
(6) = n 0 if	𝑖 = 𝑠	

∞ if	𝑖	 ≠ 𝑠	
• Node is reachable from 𝑠 if any of its neighbors are reachable

Update distance to node as minimal way to reach neighbors
𝑥1
(426) = min 𝑥1

4 , min
<,1 ∈?

𝑥<
4 + 𝑒<1

Ellen Vitercik, AAAI’24 tutorial



Bellman-Ford: Message passing

Key idea (roughly speaking): Train GNN so that 𝒉%
4 ≈ 𝑥%

(4), ∀𝑡
(Really, so that a function of 𝒉/

+ ≈ 𝑥/
(+))

𝑥/
(+)

𝑥0
(+)

𝑥1
(+)

𝑥(
(+) min 𝑥/

+ , min 𝑥2
+ + 𝑒2/

𝑥0
+ + 𝑒0/

𝑥1
+ + 𝑒1/

𝑥(
+ + 𝑒(/

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20Ellen Vitercik, AAAI’24 tutorial



Outline (applied techniques)

1. GNNs overview
2. Integer programming with GNNs
3. Neural algorithmic alignment

i. Motivation
ii. Example algorithms
iii. Experiments
iv. Understanding max-aggregation
v. Additional research

4. Learning greedy heuristics with RL
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Shortest-path predecessor prediction

Improvement of max-aggregator increases with size
It aligns better with underlying algorithm [Xu et al., ICLR’20]
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Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20Ellen Vitercik, AAAI’24 tutorial

• Trained on 20-node 
graphs

• Variety of graph types in 
train/test set: Erdős-Reyni, 
Barabási–Albert, …



Learning multiple algorithms

Learn to execute both BFS and Bellman-Ford simultaneously

Comparisons
• (no-reach): Learn Bellman-Ford alone
• Doesn’t simultaneously learn reachability

• (no-algo):
• Don’t supervise intermediate steps
• Learn predecessors directly from input 𝑥Y

(&)

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20Ellen Vitercik, AAAI’24 tutorial



Shortest-path predecessor prediction

0.7

0.75

0.8

0.85

0.9
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1

20 nodes 50 nodes 100 nodes
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Max aggregator
Max aggregator (no-reach)
Max aggregator (no-algo)

• (no-reach) results: positive knowledge transfer
• (no-algo) results: benefit of supervising intermediate steps

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20Ellen Vitercik, AAAI’24 tutorial
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Outline (applied techniques)
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Shortest-path predecessor prediction
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Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20

Why does this 
difference grow 

as we 
extrapolate to 
bigger graphs?

Ellen Vitercik, AAAI’24 tutorial



Extrapolation error

• 𝑓:𝒳 → ℝ is a model trained on 𝑥1 , 𝑦1 156
! ⊂ 𝒟

𝑦Y = 𝑔(𝑥Y) for some ground-truth function 𝑔
• 𝒫 is a distribution over 𝓧 ∖𝓓
• ℓ:ℝ×ℝ → ℝ is a loss function
• Extrapolation error: 𝔼B∼𝒫 ℓ 𝑓 𝑥 , 𝑔 𝑥

Training data

𝑔 𝑥

𝑓 𝑥

Ellen Vitercik, AAAI’24 tutorial Xu, Zhang, Li, Du, Kawarabayashi, Jegelka, ICLR’21



Aggregation functions

A

B

C

D

A

C
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1∈5 3
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+*"A

B

D

C

F

E

Target 
node

Input graph

Ellen Vitercik, AAAI’24 tutorial



ReLU MLP extrapolate linearly

Theorem [Xu et al., ICLR’21, informal]:
• 𝑓:ℝE → ℝ, a 2-layer ReLU MLP trained w/ gradient descent
• Along any direction 𝒗 ∈ ℝE, 𝑓 approaches a linear function

Training data

Neural 
network

Ellen Vitercik, AAAI’24 tutorial Xu, Zhang, Li, Du, Kawarabayashi, Jegelka, ICLR’21



ReLU MLP extrapolate linearly

Theorem [Xu et al., ICLR’21, informal]:
• 𝑓:ℝE → ℝ, a 2-layer ReLU MLP trained w/ gradient descent
• Along any direction 𝒗 ∈ ℝE, 𝑓 approaches a linear function
• More formally, let 𝒙 = 𝑡𝒗
• Then 𝑓 𝒙 + ℎ𝒗 − 𝑓 𝒙 = 𝑓 𝑡𝒗 + ℎ𝒗 − 𝑓 𝑡𝒗 → 𝛽𝒗ℎ
 at a rate 𝑂 6

4

Ellen Vitercik, AAAI’24 tutorial Xu, Zhang, Li, Du, Kawarabayashi, Jegelka, ICLR’21



Implications for GNNs

Shortest path: 𝑥1
(4) = min 𝑥1

436 , min
<,1 ∈?

𝑥<
436 + 𝑒<1

GNN:  𝒉1
(4) = ∑<∈$ 1 MLP 𝒉1

436 , 𝒉<
436

   MLP must learn a non-linearity

Ellen Vitercik, AAAI’24 tutorial Xu, Zhang, Li, Du, Kawarabayashi, Jegelka, ICLR’21



Implications for GNNs

Shortest path: 𝑥1
(4) = min 𝑥1

436 , min
<,1 ∈?

𝑥<
436 + 𝑒<1

GNN:  𝒉1
(4) = ∑<∈$ 1 MLP 𝒉1

436 , 𝒉<
436

GNN 2:  𝒉1
(4) = max

<∈$(1)
MLP 𝒉1

436 , 𝒉<
436

𝒫6789: = 𝒫6;<6 𝒫6789: ≠ 𝒫6;<6

er
ro

rPredicting shortest 
path predecessor:

[Veličković et al. ICLR’20]

0.62

5x larger graphs

Ellen Vitercik, AAAI’24 tutorial Xu, Zhang, Li, Du, Kawarabayashi, Jegelka, ICLR’21
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iii. Experiments
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Additional research

Lots of research in the past few years! E.g.:

•  How to achieve algorithmic alignment & theory guarantees
• Xu et al., ICLR’20; Dudzik, Veličković, NeurIPS’22

•  CLRS benchmark
• Sorting, searching, dynamic programming, graph algorithms, etc.
• Veličković et al. ICML’22; Ibarz et al. LoG’22; Bevilacqua et al. ICML’23

•  Primal-dual algorithms
• Numeroso et al., ICLR’23

Ellen Vitercik, AAAI’24 tutorial



Outline (applied techniques)
1. GNNs overview
2. Integer programming with GNNs
3. Neural algorithmic alignment
4. Learning greedy heuristics with RL

i. Reinforcement learning refresher
i. Markov decision processes
ii. Reinforcement learning

ii. Overview: RL for combinatorial optimization
iii. Examples: Min vertex cover and max cut
iv. RL formulation
v.  Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17
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Outline (applied techniques)
1. GNNs overview
2. Integer programming with GNNs
3. Neural algorithmic alignment
4. Learning greedy heuristics with RL

i. Reinforcement learning refresher
a. Markov decision processes
b. Reinforcement learning

ii. Overview: RL for combinatorial optimization
iii. Examples: Min vertex cover and max cut
iv. RL formulation
v. Experiments
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Learner interaction with environment

Learner

Environment

Action 𝑎Reward 𝑟State 𝑠

Ellen Vitercik, AAAI’24 tutorial



Markov decision processes

𝑆: set of states (assumed for now to be discrete)

𝐴: set of actions

Transition probability distribution 𝑃(𝑠′ ∣ 𝑠, 𝑎)
Probability of entering state 𝑠′ from state 𝑠 after taking action 𝑎

Reward function 𝑅: 𝑆 → ℝ

Goal: Policy 𝜋: 𝑆 → 𝐴 that maximizes total (discounted) reward

Ellen Vitercik, AAAI’24 tutorial



Policies and value functions

Value function for a policy:
Expected sum of discounted rewards

𝑉G 𝑠 = 𝔼 8
45#

H

𝛾4𝑅 𝑠4 ∣ 𝑠# = 𝑠, 𝑎4 = 𝜋 𝑠4 , 𝑠426 𝑠4 , 𝑎4 ∼ 𝑃

= 𝑅 𝑠 + 𝛾 8
I"∈J

𝑃 𝑠K 𝑠, 𝜋 𝑠 𝑉G 𝑠K 	 .	

Discount factor

(Bellman equation)
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Optimal policy and value function

Optimal policy 𝜋⋆	achieves the highest value for every state
𝑉G⋆(𝑠) = max

G
𝑉G 𝑠

Several different ways to find 𝜋⋆
• Value iteration
• Policy iteration

Ellen Vitercik, AAAI’24 tutorial
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Challenge of RL

MDP (𝑺, 𝑨, 𝑷, 𝑹):
• 𝑆: set of states (assumed for now to be discrete)
• 𝐴: set of actions
• Transition probability distribution 𝑃(𝑠426 ∣ 𝑠4 , 𝑎4)
• Reward function 𝑅: 𝑆 → ℝ

RL twist: We don’t know 𝑃 or 𝑅, or too big to enumerate

Ellen Vitercik, AAAI’24 tutorial



Q-learning

Q functions:
Like value functions but defined over state-action pairs

𝑄G 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 8
I"∈J

𝑃 𝑠K 𝑠, 𝑎 𝑄G 𝑠K, 𝜋 𝑠K 	

I.e., Q function is the value of:
1. Starting in state 𝑠
2. Taking action 𝑎
3. Then acting according to 𝜋
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Q-learning
Q function of the optimal policy 𝜋⋆:

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 8
I"∈J

𝑃 𝑠K 𝑠, 𝑎 max
M"

𝑄⋆ 𝑠′, 𝑎′ 	

= 𝑅 𝑠 + 𝛾 8
I"∈J

𝑃 𝑠K 𝑠, 𝑎 𝑉G⋆ 𝑠K

𝑄⋆ is the value of:
1. Starting in state 𝑠
2. Taking action 𝑎
3. Then acting optimally

Ellen Vitercik, AAAI’24 tutorial



Q-learning

(High-level) Q-learning algorithm
initialize ¡𝑄 𝑠, 𝑎 ← 0, ∀𝑠, 𝑎
repeat

Observe current state 𝑠 and reward 𝑟
Take action 𝑎 = argmax ¡𝑄 𝑠,⋅  and observe next state 𝑠K

 Improve estimate ¡𝑄 based on 𝑠, 𝑟, 𝑎, 𝑠K

Can use function approximation to represent ¡𝑄 compactly
=𝑄 𝑠, 𝑎 = 𝑓 (𝑠, 𝑎)
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RL for combinatorial optimization

Tons of research in this area

This section: Example of a pioneering work in this space

Travelling salesman 
Bello et al., ICLR‘17; Dai et al., NeurIPS’17; 
Nazari et al., NeurIPS’18; …

Maximum cut
Dai et al., NeurIPS’17; Cappart et al., 
AAAI‘19; Barrett et al., AAAI’20; …

Bin packing
Hu et al., ‘17; Laterre et al., ‘18; Cai et al., 
DRL4KDD‘19; Li et al., ’20; …

Minimum vertex cover
Dai et al., NeurIPS’17; Song et al., UAI‘19; …

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



Overview

Goal: use RL to learn new greedy strategies for graph problems
Feasible solution constructed by successively adding nodes to solution

Input: Graph 𝐺 = 𝑉, 𝐸 , weights 𝑤 𝑢, 𝑣  for 𝑢, 𝑣 ∈ 𝐸

RL state representation: Graph embedding

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17
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Minimum vertex cover

Find smallest vertex subset such that each edge is covered
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Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum

Degree 
sum: 6

Degree 
sum: 7

Ellen Vitercik, AAAI’24 tutorial



Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

Ellen Vitercik, AAAI’24 tutorial



Maximum cut

Find partition 𝑆, 𝑉 ∖ 𝑆  of nodes that maximizes
8
%," ∈;

𝑤 𝑢, 𝑣

where 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆

If 𝑤 𝑢, 𝑣 = 1 for all 𝑢, 𝑣 ∈ 𝐸:

Z
/,2 ∈>

𝑤 𝑢, 𝑣 = 5
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Maximum cut

Find partition 𝑆, 𝑉 ∖ 𝑆  of nodes that maximizes
8
%," ∈;

𝑤 𝑢, 𝑣

where 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆

Greedy: move node from one side of cut to the other 
Move node that results in the largest improvement in cut weight

Ellen Vitercik, AAAI’24 tutorial



Maximum cut

Find partition 𝑆, 𝑉 ∖ 𝑆  of nodes that maximizes
8
%," ∈;

𝑤 𝑢, 𝑣

where 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆

Greedy: move node from one side of cut to the other 
Move node that results in the largest improvement in cut weight

Scoring function that guides greedy algorithm

Ellen Vitercik, AAAI’24 tutorial



Outline (applied techniques)

1. GNNs overview
2. Integer programming with GNNs
3. Neural algorithmic alignment
4. Learning greedy heuristics with RL

i. Reinforcement learning refresher
ii. Overview: RL for combinatorial optimization
iii. Examples: Min vertex cover and max cut
iv. RL formulation
v. Experiments

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



RL for combinatorial optimization

Goal: learn a scoring function to guide greedy algorithm

Problem Greedy operation
Min vertex cover Insert node into cover
Max cut Insert node into subset
Traveling salesman Insert node into sub-tour

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



RL for combinatorial optimization

Greedy algorithm Reinforcement learning
Partial solution State
Scoring function Q-function
Select best node Greedy policy

Repeat until all edges are covered:
1.Compute node scores
2.Select best node with respect to score
3.Add best node to partial solution

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



Reinforcement learning formulation
State:
• Goal: encode partial solution 𝑆 = 𝑣6, 𝑣8, … , 𝑣 J , 𝑣1 ∈ 𝑉
• Use GNN to compute graph embedding 𝝁

Initial node features 𝑥" = n1 if	𝑣 ∈ 𝑆
0 else	

Action: Choose vertex 𝑣 ∈ 𝑉 ∖ 𝑆 to add to solution

Transition (deterministic): For chosen 𝑣 ∈ 𝑉 ∖ 𝑆, set 𝑥" = 1

E.g., nodes in independent set, nodes on one side of cut

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



Reinforcement learning formulation
State:
• Goal: encode partial solution 𝑆 = 𝑣6, 𝑣8, … , 𝑣 J , 𝑣1 ∈ 𝑉
• Use GNN to compute graph embedding 𝝁

Initial node features 𝑥" = n1 if	𝑣 ∈ 𝑆
0 else	

Action: Choose vertex 𝑣 ∈ 𝑉 ∖ 𝑆 to add to solution

Transition (deterministic): For chosen 𝑣 ∈ 𝑉 ∖ 𝑆, set 𝑥" = 1

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



Reinforcement learning formulation

Reward: 𝑟 𝑆, 𝑣  is change in objective when transition 𝑆 → (𝑆, 𝑣)

Policy (deterministic): 𝜋(𝑣|𝑆) = «
1 if	𝑣 = argmax

""∉J
¡𝑄 𝝁, 𝑣K

0 else	

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



Outline (applied techniques)

1. GNNs overview
2. Integer programming with GNNs
3. Neural algorithmic alignment
4. Learning greedy heuristics with RL

i. Reinforcement learning refresher
ii. Overview: RL for combinatorial optimization
iii. Examples: Min vertex cover and max cut
iv. RL formulation
v. Experiments

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



Min vertex cover

Paper’s approach

2-approximation 
algorithm

Greedy algorithm 
from first few slides

Barabasi-Albert 
random graphs

Another DL approach 
[Bello et al., arXiv’16]

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



Max cut

Paper’s approach

Another DL approach 
[Bello et al., arXiv’16]

Goemans-Williamson 
algorithm

Greedy algorithm 
from first few slides

Barabasi-Albert 
random graphs

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



TSP

Paper’s approach

Uniform random points on 2-D grid

• Initial subtour: 2 cities that are 
farthest apart

• Repeat the following: 
• Choose city that’s farthest 

from any city in the 
subtour

• Insert in position where it 
causes the smallest 
distance increase

[Rosenkrantz et al., SIAM JoC’77]

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



Runtime comparisons

CPLEX-1st: 1st feasible 
solution found by CPLEX

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17

Paper’s approach

2-approximation 
algorithm

Greedy algorithm from 
first few slides

CPLEX-2nd: 2nd feasible 
solution found by CPLEX



Min vertex cover visualization

Nodes seem to be selected to balance between:
• Degree
• Connectivity of the remaining graph

Ellen Vitercik, AAAI’24 tutorial Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17



Summary

Applied techniques
a. Graph neural networks

a. Neural algorithmic alignment
b. Variable selection for integer programming

b. Learning greedy heuristics with RL

After the break: Theoretical guarantees
a. Statistical guarantees for algorithm configuration
b. Algorithms with predictions

1

2

Where much of my research has been
Ellen Vitercik, AAAI’24 tutorial



Summary

Applied techniques
a. Graph neural networks

a. Neural algorithmic alignment
b. Variable selection for integer programming

b. Learning greedy heuristics with RL

Theoretical guarantees
a. Statistical guarantees for algorithm configuration
b. Algorithms with predictions

1

2

Ellen Vitercik, AAAI’24 tutorial

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Example: Integer programming solvers
Most popular tool for solving combinatorial (& nonconvex) problems

Routing Manufacturing Scheduling Planning Finance

Algorithm configuration

Ellen Vitercik, AAAI’24 tutorial



IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Algorithm configuration



IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Algorithm configuration

Best configuration for routing problems
    likely not suited for scheduling

What’s the best configuration for the application at hand?

Ellen Vitercik, AAAI’24 tutorial



Running example: Sequence alignment

Goal: Line up pairs of strings
Applications: Biology, natural language processing, etc.

vitterchik

Did you mean: vitercik

Ellen Vitercik, AAAI’24 tutorial



Sequence alignment algorithms

Input: Two sequences 𝑆 and 𝑆′ Output: Alignment of 𝑆 and 𝑆′

A – - C T G
- G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap

𝑆	 = A C T G
𝑆′ = G T C A

Ellen Vitercik, AAAI’24 tutorial



Sequence alignment algorithms

Standard algorithm with parameters 𝜌6, 𝜌8, 𝜌9 ≥ 0:
Return alignment maximizing:

(# matches)	−	𝜌6 "	(# mismatches) −	𝜌8 "	(# indels) −	𝜌9 "	(# gaps)

A – - C T G
- G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap

𝑆	 = A C T G
𝑆′ = G T C A

Ellen Vitercik, AAAI’24 tutorial



Sequence alignment algorithms
Can sometimes access ground-truth, reference alignment
E.g., in computational biology: Bahr et al., Nucleic Acids Res.’01; Raghava et al., BMC 
Bioinformatics ‘03; Edgar, Nucleic Acids Res.’04; Walle et al., Bioinformatics’04

Requires extensive manual alignments
…rather just run parameterized algorithm

How to tune algorithm’s parameters?
“There is considerable disagreement
among molecular biologists about the
correct choice” [Gusfield et al. ’94]

A – - C T G
- G T C A -

Ellen Vitercik, AAAI’24 tutorial



Sequence alignment algorithms
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

Ellen Vitercik, AAAI’24 tutorial



Sequence alignment algorithms
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with poorly-tuned parameters

Ellen Vitercik, AAAI’24 tutorial



Sequence alignment algorithms
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with poorly-tuned parameters

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA

Alignment by algorithm with well-tuned parameters

Ellen Vitercik, AAAI’24 tutorial



Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set 𝑇 of “typical” inputs

3. Find parameter setting w/ good avg performance over 𝑇
Runtime, solution quality, etc.

Sequence 𝑆"
Sequence 𝑆"?

Reference alignment 𝐴"

Sequence 𝑆#
Sequence 𝑆#?

Reference alignment 𝐴#

Ellen Vitercik, AAAI’24 tutorial



Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set 𝑇 of “typical” inputs

3. Find parameter setting w/ good avg performance over 𝑇
On average, output alignment is close to reference alignment

Sequence 𝑆"
Sequence 𝑆"?

Reference alignment 𝐴"

Sequence 𝑆#
Sequence 𝑆#?

Reference alignment 𝐴#

Ellen Vitercik, AAAI’24 tutorial



Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set 𝑇 of “typical” inputs

3. Find parameter setting w/ good avg performance over 𝑇
Key question:
How to find parameter setting with good avg performance?

Sequence 𝑆"
Sequence 𝑆"?

Reference alignment 𝐴"

Sequence 𝑆#
Sequence 𝑆#?

Reference alignment 𝐴#

Ellen Vitercik, AAAI’24 tutorial



Automated parameter tuning procedure

E.g., for sequence alignment:
algorithm by Gusfield et al. [’94]

Many other generic search strategies
E.g., Hutter et al. [JAIR’09, LION’11], Ansótegui et al. [CP’09], …

Key question:
How to find parameter setting with good avg performance?

Ellen Vitercik, AAAI’24 tutorial



Key question (focus of this section):
Will that parameter setting have good future performance?

Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set 𝑇 of “typical” inputs

3. Find parameter setting w/ good avg performance over 𝑇

Sequence 𝑆"
Sequence 𝑆"?

Reference alignment 𝐴"

Sequence 𝑆#
Sequence 𝑆#?

Reference alignment 𝐴#

Ellen Vitercik, AAAI’24 tutorial



Automated parameter tuning procedure

Seen Unseen ?
Sequence 𝑆
Sequence 𝑆′

Unknown alignment 𝐴

Sequence 𝑆"
Sequence 𝑆"?

Reference alignment 𝐴"

Sequence 𝑆#
Sequence 𝑆#?

Reference alignment 𝐴#

Key question (focus of this section):
Will that parameter setting have good future performance?
Ellen Vitercik, AAAI’24 tutorial



Generalization

Key question (focus of this section):
Good performance on average over training set implies good

     future performance?
Greedy algorithms

Gupta, Roughgarden, ITCS’16 First to ask question for algorithm configuration

Clustering
Balcan, Nagarajan, V, White, COLT’17
Garg, Kalai, NeurIPS’18
Balcan, Dick, White, NeurIPS’18
Balcan, Dick, Lang, ICLR’20

Search
Sakaue, Oki, NeurIPS’22

Numerical linear algebra
Bartlett et al., COLT’22

And many other areas…

Ellen Vitercik, AAAI’24 tutorial



This section: Main result

Key question (focus of this section):
Good performance on average over training set implies good

     future performance?

Answer this question for any parameterized algorithm where:
Performance is piecewise-structured function of parameters

Piecewise constant, linear, quadratic, …

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21Ellen Vitercik, AAAI’24 tutorial



This section: Main result

Ellen Vitercik, AAAI’24 tutorial

𝜌"

𝜌#

Algorithmic 
performance 
on fixed input

Piecewise constant Piecewise …Piecewise linear
Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Performance is piecewise-structured function of parameters
Piecewise constant, linear, quadratic, …



Distance between algorithm’s output given 𝑆, 𝑆K
       and ground-truth alignment is p-wise constant

Example: Sequence alignment

𝜌"

𝜌#

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21Ellen Vitercik, AAAI’24 tutorial



Piecewise structure

Piecewise structure unifies seemingly disparate problems:

Ties to a long line of research on machine learning for revenue maximization
Likhodedov, Sandholm, AAAI'04, ’05; Balcan, Blum, Hartline, Mansour, FOCS’05; Elkind, SODA’07; 
Cole, Roughgarden, STOC’14; Mohri, Medina, ICML’14; Devanur, Huang, Psomas, STOC’16; …

Integer programming
Balcan, Prasad, Sandholm, V, NeurIPS’21
Balcan, Prasad, Sandholm, V, NeurIPS’22
Balcan, Dick, Sandholm, V, JACM’24

Clustering
Balcan, Nagarajan, V, White, COLT’17
Balcan, Dick, White, NeurIPS’18
Balcan, Dick, Lang, ICLR’20

Greedy algorithms
Gupta, Roughgarden, ITCS’16

Computational biology
Balcan, DeBlasio, Dick, Kingsford, 
Sandholm, V, STOC’21

Mechanism configuration
Balcan, Sandholm, V, OR’24

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21Ellen Vitercik, AAAI’24 tutorial



Primary challenge

Algorithmic performance is a volatile function of parameters
Complex connection between parameters and performance

Integer programming solver parameter

Solver search 
tree size

Balcan, Prasad, Sandholm, Vitercik, NeurIPS’21Ellen Vitercik, AAAI’24 tutorial



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Application: Sequence alignment
v. Online algorithm configuration

2. Algorithms with predictions

Ellen Vitercik, AAAI’24 tutorial



ℝE: Set of all parameter settings
𝒳: Set of all inputs

Model

Ellen Vitercik, AAAI’24 tutorial



Example: Sequence alignment

ℝ9: Set of alignment algorithm parameter settings
𝒳: Set of sequence pairs

One sequence pair 𝑥 = 𝑆, 𝑆K 	 ∈ 𝒳

𝑆	 = A C T G
𝑆′ = G T C A

Ellen Vitercik, AAAI’24 tutorial



𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝE  on input 𝑥
E.g., runtime, solution quality, distance to ground truth, …

Assume 𝑢𝝆 𝑥 ∈ −1,1
Can be generalized to 𝑢𝝆 𝑥 ∈ −𝐻,𝐻

Algorithmic performance

Ellen Vitercik, AAAI’24 tutorial



Model

Standard assumption: Unknown distribution 𝒟 over inputs
Distribution models specific application domain at hand

E.g., distribution over pairs of DNA strands

E.g., distribution over pairs of protein sequences

Ellen Vitercik, AAAI’24 tutorial



Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

future

Ellen Vitercik, AAAI’24 tutorial



Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥6, … , 𝑥$~𝒟, for any 𝝆,
1
𝑁
8
156

$

𝑢𝝆 𝑥1 − 𝔼B~𝒟 𝑢𝝆 𝑥 ≤	??
Empirical average utility Expected utility

Good average empirical utility Good expected utility
Ellen Vitercik, AAAI’24 tutorial



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance

a. Example: Sequence alignment
b. Dual function definition

iii. Main result
iv. Application: Sequence alignment
v. Online algorithm configuration

2. Algorithms with predictions

Ellen Vitercik, AAAI’24 tutorial



Sequence alignment algorithms

Lemma:
For any pair 𝑆, 𝑆K, there’s a partition of ℝ9 s.t. in any region,

algorithm’s output is fixed across all parameters in region

A – - C T G
- G T C A -

𝜌"

𝜌#

𝑆	 = A C T G
𝑆′ = G T C A

Gusfield et al., Algorithmica ‘94; Fernández-Baca et al., J. of Discrete Alg. ’04Ellen Vitercik, AAAI’24 tutorial



Sequence alignment algorithms

Lemma:
For any pair 𝑆, 𝑆K, there’s a partition of ℝ9 s.t. in any region,

algorithm’s output is fixed across all parameters in region

A – C T G
G T C A -

A – - C T G
- G T C A -

𝜌"

𝜌#

𝑆	 = A C T G
𝑆′ = G T C A

Defined by max 𝑆 , 𝑆? $ hyperplanes

Gusfield et al., Algorithmica ‘94; Fernández-Baca et al., J. of Discrete Alg. ’04Ellen Vitercik, AAAI’24 tutorial



Piecewise-constant utility function

Corollary:
Utility is piecewise constant function of parameters

𝑢 @,@! 𝝆  

𝜌"

𝜌#

Distance between algorithm’s output and ground-truth alignment

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21Ellen Vitercik, AAAI’24 tutorial



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance

a. Example: Sequence alignment
b. Dual function definition

iii. Main result
iv. Application: Sequence alignment
v. Online algorithm configuration

2. Algorithms with predictions

Ellen Vitercik, AAAI’24 tutorial



Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝE  on input 𝑥
𝒰	 = 𝑢𝝆: 𝒳 → ℝ	 𝝆 ∈ ℝE  “Primal” function class

Typically, prove guarantees by bounding complexity of 𝒰

Challenge: 𝒰 is gnarly

E.g., in sequence alignment:
• Each domain element is a pair of sequences
• Unclear how to plot or visualize functions 𝑢𝝆
• No obvious notions of Lipschitz continuity or smoothness to rely on

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21Ellen Vitercik, AAAI’24 tutorial



Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝE  on input 𝑥
𝒰	 = 𝑢𝝆: 𝒳 → ℝ	 𝝆 ∈ ℝE  “Primal” function class

𝑢B∗ 𝝆 = utility as function of parameters
𝑢B∗ 𝝆 = 𝑢𝝆 𝑥  
𝒰∗ = 𝑢B∗ : ℝE → ℝ	 𝑥 ∈ 𝒳  “Dual” function class

• Dual functions have simple, Euclidean domain
• Often have ample structure can use to bound complexity of 𝒰

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21Ellen Vitercik, AAAI’24 tutorial



Dual functions 𝑢B∗ : ℝE → ℝ are piecewise-structured

Piecewise-structured functions

Clustering 
algorithm 

configuration

Integer 
programming 

algorithm 
configuration

Selling 
mechanism 

configuration

Greedy 
algorithm 

configuration

Computational 
biology 

algorithm 
configuration

Voting 
mechanism 

configuration

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21Ellen Vitercik, AAAI’24 tutorial



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Application: Sequence alignment
v. Online algorithm configuration

2. Algorithms with predictions
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Intrinsic complexity

“Intrinsic complexity” of function class 𝒢
• Measures how well functions in 𝒢 fit complex patterns
• Specific ways to quantify “intrinsic complexity”:

• VC dimension
• Pseudo-dimension

More complex Less complex

Ellen Vitercik, AAAI’24 tutorial



VC dimension

Complexity measure for binary-valued function classes ℱ
 (Classes of functions 𝑓:𝒴 → {−1,1})

E.g., linear separators

Ellen Vitercik, AAAI’24 tutorial



VC dimension

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Example: ℱ = Linear separators in ℝ8  VCdim(ℱ) ≥ 3

Ellen Vitercik, AAAI’24 tutorial



VC dimension

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Example: ℱ = Linear separators in ℝ8  VCdim(ℱ) ≥ 3

VCdim(ℱ) ≤ 3

VCdim({Linear separators in ℝE}) = 𝑑 + 1
Ellen Vitercik, AAAI’24 tutorial



Pseudo-dimension

Complexity measure for real-valued function classes 𝒢
 (Classes of functions 𝑔:𝒴 → [−1,1])

E.g., affine functions

Ellen Vitercik, AAAI’24 tutorial



Pseudo-dimension of 𝒢

Size of the largest set 𝑦6, … , 𝑦$ ⊆ 𝒴 s.t.:
for some targets 𝑧6, … , 𝑧$ ∈ ℝ,

all 2$ above/below patterns achieved by functions in 𝒢

Example: 𝒢 = Affine functions in ℝ  Pdim(𝒢) ≥ 2

𝑦" 𝑦#

𝑧"

𝑧#

𝑦" 𝑦#

𝑧"

𝑧#

𝑦" 𝑦#

𝑧"

𝑧#

𝑦" 𝑦#

𝑧"

𝑧#

Can also show that Pdim(𝒢) ≤ 2
Ellen Vitercik, AAAI’24 tutorial



Sample complexity using pseudo-dim

In the context of algorithm configuration:
• 𝒰 = 𝑢𝝆: 𝝆 ∈ ℝE  measure algorithm performance
• For 𝜖, 𝛿 ∈ 0,1 , let 𝑁 = 𝑂 UV.W 𝒰

Y$
log 6

Z
• With probability at least 1 − 𝛿 over 𝑥6, … , 𝑥$ ∼ 𝒟, ∀𝝆 ∈ ℝE,

1
𝑁
8
156

$

𝑢𝝆 𝑥1 − 𝔼B~𝒟 𝑢𝝆 𝑥 ≤ 𝜖

Empirical average utility Expected utility

Ellen Vitercik, AAAI’24 tutorial



Main result (informal)

Boundary functions 𝑓6, … , 𝑓[ ∈ ℱ partition ℝE  s.t. in each region, 
𝑢B∗ 𝝆 = 𝑔(𝝆) for some 𝑔 ∈ 𝒢.

Training set of size À𝑂 UV.W 𝒢∗ 2]^V.W ℱ∗ +`/ [
Y$

 implies 
WHP ∀𝝆, |avg utility over training set – exp utility|	≤ 𝜖

𝑓 ∈ ℱ

𝑔 ∈ 𝒢
𝑢A∗ 𝝆

𝜌"

𝜌#

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21Ellen Vitercik, AAAI’24 tutorial



Main result (informal)

Boundary functions 𝑓6, … , 𝑓[ ∈ ℱ partition ℝE  s.t. in each region, 
𝑢B∗ 𝝆 = 𝑔(𝝆) for some 𝑔 ∈ 𝒢.

Training set of size À𝑂 UV.W 𝒢∗ 2]^V.W ℱ∗ +`/ [
Y$

 implies 
WHP ∀𝝆, |avg utility over training set – exp utility|	≤ 𝜖

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

ℱ, 𝒢 are typically very well structured
• 𝒢 = set of all constant functions  ⇒ Pdim(𝒢∗) = 𝑂(1)
• 𝒢 = set of all linear functions in ℝl  ⇒ Pdim(𝒢∗) = 𝑂(𝑑)

Ellen Vitercik, AAAI’24 tutorial



Main result (informal)

Boundary functions 𝑓6, … , 𝑓[ ∈ ℱ partition ℝE  s.t. in each region, 
𝑢B∗ 𝝆 = 𝑔(𝝆) for some 𝑔 ∈ 𝒢.

Theorem:
Pdim 𝒰 = À𝑂 Pdim 𝒢∗ + VCdim ℱ∗ log 𝑘

Primal function class 𝒰 = 𝑢𝝆 	𝝆 ∈ ℝD

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21Ellen Vitercik, AAAI’24 tutorial



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Application: Sequence alignment
v. Online algorithm configuration

2. Algorithms with predictions
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Piecewise constant dual functions

Lemma:
Utility is piecewise constant function of parameters

𝜌"

𝜌#

𝑢(@,@!)
∗ 𝝆  

Ellen Vitercik, AAAI’24 tutorial Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Sequence alignment guarantees

Theorem: Training set of size À𝑂 +`/()*a.	+*-/d0)
Y$

 implies WHP ∀𝝆,
|avg utility over training set – exp utility|	≤ 𝜖

𝜌"

𝜌#

𝑢(@,@!)
∗ 𝝆  

future

Ellen Vitercik, AAAI’24 tutorial



Many more applications

Clustering 
algorithm 

configuration

Integer 
programming 

algorithm 
configuration

Selling 
mechanism 

configuration

Greedy 
algorithm 

configuration

Computational 
biology 

algorithm 
configuration

Voting 
mechanism 

configuration

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21Ellen Vitercik, AAAI’24 tutorial



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Application: Sequence alignment
v. Online algorithm configuration

2. Algorithms with predictions
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Day 1: 𝝆" Day 2: 𝝆# Day 3: 𝝆$

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Goal: Compete with best parameter setting in hindsight
• Impossible in the worst case
• Under what conditions is online configuration possible?

Ellen Vitercik, AAAI’24 tutorial Gupta and Roughgarden, ITCS’16; Cohen-Addad, Kanade AISTATS’17; Balcan, Dick, Vitercik, FOCS’18; …



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Algorithms with predictions
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Assume you have some predictions about your problem, e.g.:
Probability any given element is in a huge database
 Kraska et al., SIGMOD’18; Mitzenmacher, NeurIPS’18
In caching, the next time you’ll see an element
 Lykouris, Vassilvitskii, ICML’18

Main question:
How to use predictions to improve algorithmic performance?

Algorithms with predictions

Ellen Vitercik, AAAI’24 tutorial



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Algorithms with predictions

a. Searching a sorted array
b. Online algorithms
c. Additional research
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Example: Searching in a sorted array

• Goal: Given query 𝑞 & sorted array 𝐴, find 𝑞’s index (if 𝑞 in 𝐴)
• Predictor: ℎ 𝑞  = guess of 𝑞’s index 
• Algorithm: Check 𝐴 ℎ 𝑞 . If 𝑞 is there, return ℎ 𝑞 . Else:
• If 𝑞 > 𝐴 ℎ 𝑞 , check 𝐴 ℎ 𝑞 + 2Y   for 𝑖 > 1 until find something larger

• Do binary search on interval ℎ 𝑞 + 2!"#, ℎ 𝑞 + 2!

• If 𝑞 < 𝐴 ℎ 𝑞 , symmetric

1 3 6 7 8 15 23 27 32 35 39

Example:
• 𝑞 = 8
• ℎ 𝑞 = 2

Ellen Vitercik, AAAI’24 tutorial Book chapter by Mitzenmacher, Vassilvitskii, ’20



Example: Searching in a sorted array

• Goal: Given query 𝑞 & sorted array 𝐴, find 𝑞’s index (if 𝑞 in 𝐴)
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Example: Searching in a sorted array

• Goal: Given query 𝑞 & sorted array 𝐴, find 𝑞’s index (if 𝑞 in 𝐴)
• Predictor: ℎ 𝑞  = guess of 𝑞’s index 
• Algorithm: Check 𝐴 ℎ 𝑞 . If 𝑞 is there, return ℎ 𝑞 . Else:
• If 𝑞 > 𝐴 ℎ 𝑞 , check 𝐴 ℎ 𝑞 + 2Y   for 𝑖 > 1 until find something larger
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Example: Searching in a sorted array

• Goal: Given query 𝑞 & sorted array 𝐴, find 𝑞’s index (if 𝑞 in 𝐴)
• Predictor: ℎ 𝑞  = guess of 𝑞’s index 
• Algorithm: Check 𝐴 ℎ 𝑞 . If 𝑞 is there, return ℎ 𝑞 . Else:
• If 𝑞 > 𝐴 ℎ 𝑞 , check 𝐴 ℎ 𝑞 + 2Y   for 𝑖 > 1 until find something larger

• Do binary search on interval ℎ 𝑞 + 2!"#, ℎ 𝑞 + 2!

• If 𝑞 < 𝐴 ℎ 𝑞 , symmetric

Example:
• 𝑞 = 8
• ℎ 𝑞 = 2

Binary search

1 3 6 7 8 15 23 27 32 35 39

Ellen Vitercik, AAAI’24 tutorial Book chapter by Mitzenmacher, Vassilvitskii, ’20



Example: Searching in a sorted array

Analysis:
• Let 𝑡(𝑞) be index of 𝑞 in 𝐴 or of smallest element larger than 𝑞
• Runtime is O log 𝑡 𝑞 − ℎ 𝑞 :

• Finding larger/smaller element takes 𝑂 log 𝑡 𝑞 − ℎ 𝑞  steps
• Binary search takes 𝑂 log 𝑡 𝑞 − ℎ 𝑞  steps

• Better predictions lead to better runtime
• Runtime never worse than worst-case 𝑂 log 𝐴

Prediction error

1 3 6 7 8 15 23 27 32 35 39

Ellen Vitercik, AAAI’24 tutorial Book chapter by Mitzenmacher, Vassilvitskii, ’20



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Algorithms with predictions

a. Searching a sorted array
b. Online algorithms
c. Additional research

Ellen Vitercik, AAAI’24 tutorial

Purohit, Svitkina, Kumar, NeurIPS’18



Online algorithms

Full input not revealed upfront, but at some later stage, e.g.:

Matching: nodes of a graph arrive over time
Must irrevocably decide whether to match a node when it arrives

Caching: memory access requests arrive over time
Must decide what to keep in cache

Scheduling: job lengths not revealed until they terminate
Must decide which jobs to schedule when

Ellen Vitercik, AAAI’24 tutorial



Competitive ratio (CR)

Standard measure of online algorithm’s performance:
CR =

ALG
OPT

E.g., in matching:
CR =

weight	of	algorithmKs	matching
maximum	weight	matching

Offline optimal solution that knows the entire input

Ellen Vitercik, AAAI’24 tutorial



Online algorithms

Full input not revealed upfront, but at some later stage

What if algorithm receives some predictions about input?
• Online advertising

e.g., Mahdian et al. [EC’07]; Devanur, Hayes [EC’09]; Muñoz Medina, Vassilvitskii 
[NeurIPS’17]

• Caching
e.g., Lykouris, Vassilvitskii [ICML’18]

• Data structures
e.g., Mitzenmacher [NeurIPS’18]

• …

Ellen Vitercik, AAAI’24 tutorial



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Algorithms with predictions

a. Searching a sorted array
b. Online algorithms

i. Overview
ii. Ski rental problem
iii. Job scheduling

c. Additional research

Ellen Vitercik, AAAI’24 tutorial



Ski rental problem

Family of problems that revolve around a decision:
• Incur a recurring expense, or
• Pay a single fee that eliminates the ongoing cost

Ellen Vitercik, AAAI’24 tutorial



Ski rental problem
Problem: Skier will ski for unknown number of days
• Can either rent each day for $1/day or buy for $𝑏
• E.g., if ski for 5 days and then buy, total price is 5 + 𝑏

If ski 𝑥 days, optimal clairvoyant strategy pays OPT = min 𝑥, 𝑏

Breakeven strategy: Rent for 𝑏 − 1 days, then buy
• CR = qrs

tuv =
w𝟏 !"# y z%&yz 𝟏 !$#

{|} w,z < 2 (best deterministic)
• Randomized alg. CR = ~

~%& [Karlin et al., Algorithmica ‘94] 

Ellen Vitercik, AAAI’24 tutorial



Ski rental problem
Prediction 𝑦 of number of skiing days, error 𝜂 = |𝑥 − 𝑦|

Baseline: Buy at beginning if 𝑦 > 𝑏, else rent all days

Theorem: ALG ≤ OPT + 𝜂
If 𝑦 small but 𝑥 ≫ 𝑏, CR can be unbounded

 

Ellen Vitercik, AAAI’24 tutorial Purohit, Svitkina, Kumar, NeurIPS’18



Deterministic algorithm
Prediction 𝑦 of number of skiing days, error 𝜂 = |𝑥 − 𝑦|

Algorithm (with parameter 𝜆 ∈ [0,1]):
If 𝑦 ≥ 𝑏, buy on start of day 𝜆𝑏 ; else buy on start of day i

j

• If really trust predictions: set 𝜆 = 0
Equivalent to blindly following predictions

• If don’t trust predictions: set 𝜆 = 1
Equivalent to running the worst-case algorithm

Ellen Vitercik, AAAI’24 tutorial Purohit, Svitkina, Kumar, NeurIPS’18



Deterministic algorithm
Prediction 𝑦 of number of skiing days, error 𝜂 = |𝑥 − 𝑦|

Algorithm (with parameter 𝜆 ∈ [0,1]):
If 𝑦 ≥ 𝑏, buy on start of day 𝜆𝑏 ; else buy on start of day i

j

Theorem: Algorithm has CR ≤ min 62j
j
, 1 + 𝜆 + k

63j lUm
• If predictor is perfect 𝜂 = 0 , CR is small ≤ 1 + 𝜆
• No matter how big 𝜂 is, setting 𝜆 = 1 recovers baseline CR = 2
 

Theorem: Algorithm has CR ≤ min 62j
j
, 1 + 𝜆 + k

63j lUm

Ellen Vitercik, AAAI’24 tutorial Purohit, Svitkina, Kumar, NeurIPS’18



Deterministic algorithm

Theorem: Algorithm has CR ≤ min 𝟏2𝝀
𝝀
, 1 + 𝜆 + k

63j lUm

Proof sketch: If 𝑦 ≥ 𝑏, buys on start of day 𝜆𝑏

ALG
OPT

=

𝑥
𝑥

if	𝑥 < 𝜆𝑏 	

𝜆𝑏 − 1 + 𝑏
𝑥

if 𝜆𝑏 ≤ 𝑥 ≤ 𝑏

𝜆𝑏 − 1 + 𝑏
𝑏

if	𝑥 ≥ 𝑏	

Worst when 𝑥 = 𝜆𝑏  and CR = zy �z %&
�z

≤ &y�
�

; similarly for 𝑦 < 𝑏

Theorem: Algorithm has CR ≤ min 62j
j
, 1 + 𝜆 + k

63j lUm

Ellen Vitercik, AAAI’24 tutorial Purohit, Svitkina, Kumar, NeurIPS’18



Deterministic algorithm

Theorem: Algorithm has CR ≤ min 𝟏2𝝀
𝝀
, 1 + 𝜆 + k

63j lUm

Proof sketch: If 𝑦 ≥ 𝑏, buys on start of day 𝜆𝑏

ALG
OPT

=

𝑥
𝑥

if	𝑥 < 𝜆𝑏 	

𝜆𝑏 − 1 + 𝑏
𝑥

if 𝜆𝑏 ≤ 𝑥 ≤ 𝑏

𝜆𝑏 − 1 + 𝑏
𝑏

if	𝑥 ≥ 𝑏	

Worst when 𝑥 = 𝜆𝑏  and CR = zy �z %&
�z

≤ &y�
�

; similarly for 𝑦 < 𝑏

Theorem: Algorithm has CR ≤ min 62j
j
, 1 + 𝜆 + k

63j lUm
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Deterministic algorithm

Theorem: Algorithm has CR ≤ min 𝟏2𝝀
𝝀
, 1 + 𝜆 + k

63j lUm

Proof sketch: If 𝑦 ≥ 𝑏, buys on start of day 𝜆𝑏

ALG
OPT

=

𝑥
𝑥

if	𝑥 < 𝜆𝑏 	

𝜆𝑏 − 1 + 𝑏
𝑥

if 𝜆𝑏 ≤ 𝑥 ≤ 𝑏

𝜆𝑏 − 1 + 𝑏
𝑏

if	𝑥 ≥ 𝑏	

Worst when 𝑥 = 𝜆𝑏  and CR = zy �z %&
�z

≤ &y�
�

; similarly for 𝑦 < 𝑏

Theorem: Algorithm has CR ≤ min 62j
j
, 1 + 𝜆 + k

63j lUm
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Design principals

Consistency:
• Predictions are perfect ⇒ recover offline optimal
• Algorithm is 𝛼-consistent if CR → 𝛼 as error 𝜂 → 0

Robustness:
• Predictions are terrible ⇒ no worse than worst-case
• Algorithm is 𝛽-consistent if CR ≤ 𝛽 for all 𝜂

E.g., ski rental: CR ≤ min 62j
j
, 1 + 𝜆 + k

63j lUm

1 + 𝜆 -consistent, &y�
�

-robust
Bounds are tight [Gollapudi, Panigrahi, ICML’19; Angelopoulos et al., ITCS’20]

E.g., ski rental: CR ≤ min 62j
j
, 1 + 𝜆 + k

63j lUm

1 + 𝜆 -consistent, &y�
� -robust

Ellen Vitercik, AAAI’24 tutorial Lykouris, Vassilvitskii, ICML’18; Purohit, Svitkina, Kumar, NeurIPS’18



Randomized algorithm

if 𝑦 ≥ 𝑏:
Let 𝑘 ← 𝜆𝑏

For 𝑖 ∈ [𝑘], define 𝑞Y ←
z%&
z

#%Y &

z &% &% �% #
&

Buy on day 𝑗 ∈ [𝑘] sampled from distribution defined by 𝑞&, … , 𝑞#
else

Let ℓ ← z
�

For 𝑖 ∈ [𝑘], define 𝑞Y ←
z%&
z

ℓ%Y &

z &% &% �% #
ℓ

Buy on day 𝑗 ∈ [ℓ] sampled from distribution defined by 𝑞&, … , 𝑞ℓ

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7

𝑞( when 𝑏 = 10, 𝜆 = 0.7, 𝑦 ≥ 𝑏

Ellen Vitercik, AAAI’24 tutorial Purohit, Svitkina, Kumar, NeurIPS’18



Randomized algorithm

Theorem: CR ≤ min 6

63*pq 3 j3 r% &
, j
63*pq 3j

1 + k
lUm

• �
&%��� %� -consistent, &

&%��� % �% �% #
-robust

• Bounds are tight [Wei, Zhang, NeurIPS’20]

Ellen Vitercik, AAAI’24 tutorial Purohit, Svitkina, Kumar, NeurIPS’18



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Algorithms with predictions

a. Searching a sorted array
b. Online algorithms

i. Overview
ii. Ski rental problem
iii. Job scheduling

c. Additional research
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Job scheduling

• Task: schedule 𝑛 jobs on a single machine
• Job 𝑗 has unknown processing time 𝑥<
• Goal: minimize sum of completion times of the jobs

i.e., if job 𝑗 completes at time 𝑐�, goal is to minimize ∑𝑐�

Ellen Vitercik, AAAI’24 tutorial
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Job scheduling

• Task: schedule 𝑛 jobs on a single machine
• Job 𝑗 has unknown processing time 𝑥<
• Goal: minimize sum of completion times of the jobs

i.e., if job 𝑗 completes at time 𝑐�, goal is to minimize ∑𝑐�
• Can switch between jobs

Ellen Vitercik, AAAI’24 tutorial



Job scheduling
Optimal solution if processing times 𝑥< ’s are known:

schedule jobs in increasing order of 𝑥<

If 𝑥6 ≤ ⋯ ≤ 𝑥!,

OPT =8
156

!

8
<56

1

𝑥<

Ellen Vitercik, AAAI’24 tutorial

𝑥J;FFKL 𝑥EFG; 𝑥EF8HI

𝑐J;FFKL
𝑐EFG;

𝑐EF8HI



Round robin

Algorithm with a competitive ratio of 2: round robin
Schedule 1 unit of time per remaining job, round-robin

Round-robin over 𝑘 jobs ≡ run jobs simultaneously at rate of 6
[

Black job completes

Round robin:

Simultaneous round robin:
Ellen Vitercik, AAAI’24 tutorial



Algorithms-with-predictions approach

Predictions 𝑦6, … , 𝑦! of 𝑥6, … , 𝑥! with 𝜂 = ∑156! 𝑦1 − 𝑥1

If really trust predictions: schedule in increasing order of 𝑦1
“Shortest predicted job first (SPJF)”

If don’t trust predictions: round-robin (RR)

Ellen Vitercik, AAAI’24 tutorial Purohit, Svitkina, Kumar, NeurIPS’18



Algorithms-with-predictions approach
Algorithm: Preferential round-robin (with parameter 𝜆 ∈ 0,1 )

Run SPJF and RR simultaneously
• SPJF at a rate 𝜆
• RR at a rate 1 − 𝜆

Example: 𝜆 = 6
8
, 3 jobs, shortest predicted job is blue job

 
• Blue job at a rate of 𝜆 + 1 − 𝜆 ⋅ "

$
= #

$

• Yellow job at a rate of 1 − 𝜆 ⋅ "
$
= "

'

• Black job at a rate of 1 − 𝜆 ⋅ "
$
= "

'

Ellen Vitercik, AAAI’24 tutorial Purohit, Svitkina, Kumar, NeurIPS’18



Preferential round-robin
Algorithm: Preferential round-robin (with parameter 𝜆 ∈ 0,1 )

Run SPJF and RR simultaneously
• SPJF at a rate 𝜆
• RR at a rate 1 − 𝜆

Theorem: Algorithm’s competitive ratio is

CR ≤ min
1
𝜆
1 +

2𝜂
𝑛

,
1

1 − 𝜆
⋅ 2

So it’s 6
j
-consistent, 8

63j
-robust

Ellen Vitercik, AAAI’24 tutorial
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Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Algorithms with predictions

a. Searching a sorted array
b. Online algorithms
c. Additional research
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Just scratched the surface

algorithms-with-predictions.github.io

Online advertising
Mahdian, Nazerzadeh, Saberi, EC’07; 
Devanur, Hayes, EC’09; Medina, 
Vassilvitskii, NeurIPS’17; …

Caching
Lykouris, Vassilvitskii, ICML’18; Rohatgi, 
SODA’19; Wei, APPROX-RANDOM’20; …

Frequency estimation
Hsu, Indyk, Katabi, Vakilian, ICLR’19; …

Learning low-rank approximations
Indyk, Vakilian, Yuan, NeurIPS’19; …

Scheduling
Mitzenmacher, ITCS’20; Moseley, 
Vassilvitskii, Lattanzi, Lavastida, SODA’20; …

Closely related: the “predict-then-optimize” framework
Elmachtoub, Grigas, Management Science ’22; Elmachtoub et al., ICML’20; ...

Ellen Vitercik, AAAI’24 tutorial



Summary
Applied techniques

a. Graph neural networks
a. Neural algorithmic alignment
b. Variable selection for integer programming

b. Learning greedy heuristics with RL

Theoretical guarantees
a. Statistical guarantees for algorithm configuration
b. Algorithms with predictions

Future directions

1

2

3
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Outline (future directions)

1. Tighter statistical bounds
2. Multi-task algorithm design: Knowledge transfer
3. Size generalization
4. ML as a toolkit for theory
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Future work: Tighter statistical bounds

WHP ∀𝝆, |avg utility over training set – exp utility|	≤ 𝜖
given training set of size À𝑂 6

Y$
Pdim 𝒢∗ + VCdim ℱ∗ log 𝑘

𝑓 ∈ ℱ

𝑔 ∈ 𝒢
𝑢A∗ 𝝆

Number of boundary functions

𝑘 is often exponential
Can lead to large bounds

I expect this can sometimes be avoided!
Would require more information about duals

Ellen Vitercik, AAAI’24 tutorial



Outline (future directions)

1. Tighter statistical bounds
2. Multi-task algorithm design: Knowledge transfer
3. Size generalization
4. ML as a toolkit for theory
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Future work: Knowledge transfer

• Training a GNN to solve multiple related problems…
can sometimes lead to better single-task performance

• E.g., training reachability and shortest-paths (grey line)
v.s. just training shortest-paths (yellow line)

0.75

0.85

0.95

20 nodes 50 nodes 100 nodes

Shortest-paths 
accuracy

Max aggregator
Max aggregator (no-reach)

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20Ellen Vitercik, AAAI’24 tutorial



Future work: Knowledge transfer

• Training a GNN to solve multiple related problems…
can sometimes lead to better single-task performance

• Can we understand theoretically why this happens?
• For which sets of algorithms can we expect knowledge transfer?

Ellen Vitercik, AAAI’24 tutorial



Outline (future directions)

1. Tighter statistical bounds
2. Multi-task algorithm design: Knowledge transfer
3. Size generalization
4. ML as a toolkit for theory
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Future work: Size generalization
Machine-learned algorithms can scale to larger instances

Applied research: Dai et al., NeurIPS’17; Veličković, et al., ICLR’20; …
Goal: eventually, solve problems no one’s ever been able to solve

However, size generalization is not immediate! It depends on:
• The machine-learned algorithm

Is the algorithm scale sensitive?

Example [Xu et al., ICLR’21]:
• Algorithms represents by GNNs do generalize
• Algs represented by MLPs don’t generalize across size

Ellen Vitercik, AAAI’24 tutorial



Future work: Size generalization
Machine-learned algorithms can scale to larger instances

Applied research: Dai et al., NeurIPS’17; Veličković, et al., ICLR’20; …
Goal: eventually, solve problems no one’s ever been able to solve

However, size generalization is not immediate! It depends on:
• The machine-learned algorithm

Is the algorithm scale sensitive?
• The problem instances

As size scales, what features must be preserved?
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Future work: Size generalization

Can you:
1.  Shrink a set of big integer programs

2.  Learn a good algorithm on the small instances
3.  Apply what you learned to the big instances?

graphs
…

Ellen Vitercik, AAAI’24 tutorial



Outline (future directions)

1. Tighter statistical bounds
2. Multi-task algorithm design: Knowledge transfer
3. Size generalization
4. ML as a toolkit for theory
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Future work: ML as a toolkit for theory

E.g., Dai et al. [NeurIPS’17] write that their RL alg discovered:
“New and interesting” greedy strategies for MAXCUT and MVC
“which intuitively make sense but have not been analyzed before,”
thus could be a “good assistive tool for discovering new algorithms.”

Data-driven 
algorithm design

Which algorithm classes to optimize over?

Q: Why are some machine-learned algs so dominant?

Classical algorithm 
design & analysis
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Thank you! Questions?


