Machine learning for discrete optimization: Theoretical guarantees and applied frontiers

Ellen Vitercik

Stanford University

Algorithm configuration

How to tune an algorithm's parameters?

0

Algorithm selection

Given a variety of algorithms, which to use?

Algorithm design

Can machine learning guide algorithm discovery?

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

O Algorithm design

Can machine learning guide algorithm discovery?

Algorithm configuration

Example: Integer programming solvers

Most popular tool for solving combinatorial (& nonconvex) problems

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has **170-page** manual describing **172** parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

CPX PARAM NODEFILEIND 100 CPX PARAM NODELIM 101 CPX PARAM NODESEL 102 CPX_PARAM_NZREADLIM 103 CPX PARAM OBJDIF 104 CPX_PARAM_OBJLLIM 105 CPX_PARAM_OBJULIM 105 CPX_PARAM_PARALLELMODE 108 CPX_PARAM_PERIND 110 CPX PARAM PERLIM 111 CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30 CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46 CPX_PARAM_POLISHAFTERNODE 115 CPXPARAM_CPUmask 48 CPX_PARAM_POLISHAFTERTIME 116 CPX_PARAM_POLISHTIME (deprecated) 116 CPX_PARAM_POPULATELIM 117 CPX PARAM PPRIIND 118 CPX_PARAM_PREDUAL 119 CPX_PARAM_PREIND 120 CPX_PARAM_PRELINEAR 120 CPX_PARAM_PREPASS 121 CPX_PARAM_PRESLVND 122 CPX PARAM PRICELIM 123 CPX_PARAM_PROBE 123 CPX_PARAM_PROBEDETTIME 124 CPX_PARAM_PROBETIME 124 CPX_PARAM_QPMAKEPSDIND 125 CPX_PARAM_QPMETHOD 138 CPX PARAM OPNZREADLIM 126

CPX PARAM TRELIM 160 CPX_PARAM_TUNINGDETTILIM 160 CPX PARAM TUNINGDISPLAY 162 CPX_PARAM_NUMERICALEMPHASIS_102CPX_PARAM_TUNINGMEASURE_163 CPX_PARAM_TUNINGREPEAT 164 CPX_PARAM_TUNINGTILIM 165 CPX_PARAM_VARSEL 166 CPX_PARAM_WORKDIR 167 CPX_PARAM_WORKMEM 168 CPX PARAM WRITELEVEL 169 CPX PARAM ZEROHALFCUTS 170 CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut 35 CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut 36 CPXPARAM_DistMIP_Rampup_Duration 128 CPXPARAM_LPMethod 136 CPXPARAM_MIP_Cuts_BQP 38 CPXPARAM_MIP_Cuts_LocalImplied 77 CPXPARAM_MIP_Cuts_RLT 136 CPXPARAM_MIP_Cuts_ZeroHalfCut 170 CPXPARAM_MIP_Limits_CutsFactor 52 CPXPARAM_MIP_Limits_RampupDetTimeLimit 127 deprecated: see CPXPARAM_MIP_Limits_RampupTimeLimit 128 CPXPARAM MIP Limits Solutions 79 CPXPARAM MIP Limits StrongCand 154 CPXPARAM_MIP_Limits_StrongIt 154 CPXPARAM_MIP_Limits_TreeMemory 160 CPXPARAM_MIP_OrderType 91 CPXPARAM_MIP_Pool_AbsGap 146 CPXPARAM_MIP_Pool_Capacity 147 CPXPARAM_MIP_Pool_Intensity 149

CPX_PARAM_RANDOMSEED 130 CPX PARAM REDUCE 131 CPX_PARAM_REINV 131 CPX PARAM RELAXPREIND 132 CPX_PARAM_RELOBJDIF 133 CPX PARAM REPAIRTRIES 133 CPX PARAM REPEATPRESOLVE 134 CPX PARAM RINSHEUR 135 CPX_PARAM_RLT 136 CPX_PARAM_ROWREADLIM 141 CPX_PARAM_SCAIND 142 CPX PARAM SCRIND 143 CPX_PARAM_SIFTALG 143 CPX PARAM SIFTDISPLAY 144 CPX_PARAM_SIFTITLIM 145 CPX PARAM SIMDISPLAY 145 CPX_PARAM_SINGLIM 146 CPX_PARAM_SOLNPOOLAGAP_146 CPX_PARAM_SOLNPOOLCAPACITY 147 CPXPARAM_Sifting_Display 144 CPX PARAM SOLNPOOLGAP 148 CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145 CPX PARAM SOLUTIONTARGET CPXPARAM_OptimalityTarget 106 CPX_PARAM_SOLUTIONTYPE 152 CPX_PARAM_STARTALG 139 CPX_PARAM_STRONGCANDLIM 154 CPX_PARAM_STRONGITLIM 154 CPX PARAM SUBALG 99 CPX_PARAM_SUBMIPNODELIMIT 155 CPX_PARAM_SYMMETRY 156 CPX_PARAM_THREADS 157 CPX_PARAM_TILIM 159

CPXPARAM_MIP_Pool_RelGap 148 CPXPARAM_MIP_Pool_Replace 151 CPXPARAM_MIP_Strategy_Branch 39 CPXPARAM MIP Strategy MIOCPStrat 93 CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73 CPXPARAM MIP Strategy VariableSelect 166 CPX PARAM FRACPASS 74 CPXPARAM MIP SubMIP NodeLimit 155 CPXPARAM OptimalityTarget 106 CPXPARAM_Output_WriteLevel 169 CPXPARAM_Preprocessing_Aggregator 19 CPXPARAM_Preprocessing_Fill 19 CPXPARAM Preprocessing Linear 120 CPXPARAM_Preprocessing_Reduce 131 CPXPARAM Preprocessing Symmetry 156 CPXPARAM_Read_DataCheck 54 CPXPARAM Read Scale 142 CPXPARAM_ScreenOutput 143 CPXPARAM Sifting Algorithm 143 CPXPARAM Sifting Iterations 145 CPX PARAM SOLNPOOLREPLACE 151 CPXPARAM Simplex Limits Singularity 146 CPXPARAM_SolutionType 152 CPXPARAM_Threads 157 CPXPARAM_TimeLimit 159 CPXPARAM_Tune_DetTimeLimit 160 CPXPARAM Tune Display 162 CPXPARAM_Tune_Measure 163 CPXPARAM_Tune_Repeat 164 CPXPARAM_Tune_TimeLimit 165 CPXPARAM_WorkDir 167 CPXPARAM_WorkMem 168 CraInd 50

CPX_PARAM_FLOWCOVERS 70 CPX PARAM FLOWPATHS 71 CPX_PARAM_FPHEUR 72 CPX PARAM FRACCAND 73 CPX_PARAM_GUBCOVERS 75 CPX_PARAM_HEURFREQ 76 CPX_PARAM_IMPLBD 76 CPX_PARAM_INTSOLFILEPREFIX 78 CPX_PARAM_COVERS 47 CPX_PARAM_INTSOLLIM 79 CPX PARAM ITLIM 80 CPX_PARAM_LANDPCUTS 82 CPX PARAM LBHEUR 81 CPX_PARAM_LPMETHOD 136 CPX PARAM MCFCUTS 82 CPX_PARAM_MEMORYEMPHASIS CPX PARAM MIPCBREDLP 84 CPX_PARAM_MIPDISPLAY 85 CPX PARAM MIPEMPHASIS 87 CPX_PARAM_MIPINTERVAL 88 CPX PARAM MIPKAPPASTATS 89 CPX_PARAM_MIPORDIND 90 CPX PARAM MIPORDTYPE 91 CPX_PARAM_MIPSEARCH 92 CPX_PARAM_MIQCPSTRAT 93 CPX_PARAM_MIRCUTS 94 CPX PARAM MPSLONGNUM 94 CPX_PARAM_NETDISPLAY 95 CPX PARAM NETEPOPT 96 CPX_PARAM_NETEPRHS 96 CPX PARAM NETFIND 97 CPX_PARAM_NETITLIM 98 CPX PARAM NETPPRIIND 98

CPX_PARAM_BRDIR 39 CPX_PARAM_BTTOL 40 CPX_PARAM_CALCOCPDUALS 41 CPX PARAM CLIOUES 42 CPX_PARAM_CLOCKTYPE 43 CPX PARAM CLONELOG 43 CPX_PARAM_COEREDIND 44 CPX PARAM COLREADLIM 45 CPX_PARAM_CONFLICTDISPLAY 46 CPX_PARAM_CPUMASK 48 CPX PARAM CRAIND 50 CPX_PARAM_CUTLO 51 CPX PARAM CUTPASS 52 CPX_PARAM_CUTSFACTOR 52 CPX PARAM CUTUP 53 83CPX_PARAM_DATACHECK 54 CPX_PARAM_DEPIND 55 CPX_PARAM_DETTILIM 56 CPX PARAM DISICUTS 57 CPX_PARAM_DIVETYPE 58 CPX PARAM DPRIIND 59 CPX_PARAM_EACHCUTLIM 60 CPX PARAM EPAGAP 61 CPX_PARAM_EPGAP 61 CPX PARAM EPINT 62 CPX_PARAM_EPMRK 64 CPX PARAM EPOPT 65 CPX_PARAM_EPPER 65 CPX PARAM EPRELAX 66 CPX_PARAM_EPRHS 67 CPX PARAM FEASOPTMODE 68 CPX_PARAM_FILEENCODING 69

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

What's the best **configuration** for the application at hand?

Best configuration for **routing** problems likely not suited for **scheduling**

Algorithm configuration

How to tune an algorithm's parameters?

Given a variety of algorithms, which to use?

O Algorithm design

Can machine learning guide algorithm discovery?

Example: Clustering

Many different algorithms

How to **select** the best algorithm for the application at hand?

Algorithm selection in theory

Worst-case analysis has been the main framework for decades Has led to beautiful, practical algorithms

Worst-case analysis's approach to **algorithm selection**: Select the algorithm that's best in worst-case scenarios

Worst-case instances rarely occur in practice

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

Algorithm design

Can machine learning guide algorithm discovery?

Long-term goal:

Researchers will be empowered with data-driven tools to

- Č- Conceive
- 🔒 Prototype
- <u>l≓</u> Validate

algorithmic ideas...

and provide theoretical guarantees for their discoveries

Research area is built on a key observation:

In practice, we have data about the application domain

Routing problems a shipping company solves

Clustering problems a biology lab solves

Scheduling problems an airline solves

How can we use this data to guide:

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

Algorithm design

Can machine learning guide algorithm discovery?

ML + discrete opt: Potential impact

Example: integer programming

- Used heavily throughout industry and science
- Many different ways to incorporate learning into solving
- Solving is very difficult, so ML can make a huge difference

Example: Spectrum auctions

In '16-'17, FCC held a \$19.8 billion radio spectrum auction
Involves solving huge graph-coloring problems

- SATFC uses algorithm configuration + selection
- Simulations indicate SATFC saved the government billions

A bit of history

Important research direction in artificial intelligence for decades

Has led to **breakthroughs** in

- Combinatorial auction winner determination
- SAT
- Constraint satisfaction
- Integer programming
- Many other areas

A bit of history

A bit of history

2017: Around the start of the material in this tutorial

Ellen Vitercik, AAAI'24 tutorial

Plan for tutorial

1 Applied techniques

- a. Graph neural networks
- b. Reinforcement learning

2 Theoretical guarantees

- a. Statistical guarantees for algorithm configuration <
- b. Algorithms with predictions

Where much of my research has been

Outline (applied techniques)

1. GNNs overview

- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL

GNN motivation

Main question:

How to utilize relational structure for better prediction?

Today: Modern ML toolbox

Modern DL toolbox is designed for simple sequences & grids

Why is graph deep learning hard?

Networks are complex

• Arbitrary size and complex topological structure

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

Different types of tasks

Prediction with graphs: Examples

Graph-level tasks:

E.g., for a molecule represented as a graph, could predict:

- What the molecule smells like
- Whether it will bind to a receptor implicated in a disease

Prediction with graphs: Examples

Node-level tasks:

E.g., political affiliations of users in a social network

Prediction with graphs: Examples

Edge-level tasks: E.g.:

- Suggesting new friends
- Recommendations on Amazon, Netflix, ...

Example: Traffic routing

E.g., Google maps

deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Ellen Vitercik, AAAI'24 tutorial

Example: Learning to simulate physics

Nodes: Particles

Edges: Interaction between particles

Goal: Predict how a graph will evolve over time

Ellen Vitercik, AAAI'24 tutorial

Example: Combinatorial optimization

Replace full algorithm or learn steps (e.g., branching decision)

Graph neural networks: First step

- Design features for nodes/links/graphs
- Obtain features for all training data

Graph neural networks: Objective

Idea:

- 1. Encode each node and its neighborhood with embedding
- 2. Aggregate set of node embeddings into graph embedding
- 3. Use embeddings to make predictions

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

Encoding neighborhoods: General form

 $h_v^{(0)} = x_v$ (feature representation for node v)

In each round $k \in [K]$, for each node v:

1. **Aggregate** over neighbors
$$m_{N(v)}^{(k)} = \text{AGGREGATE}^{(k)} \left(\left\{ h_u^{(k-1)} : u \in N(v) \right\} \right)$$
Neighborhood of v

Encoding neighborhoods: General form

 $h_v^{(0)} = x_v$ (feature representation for node v)

In each round $k \in [K]$, for each node v:

1. Aggregate over neighbors

$$\boldsymbol{m}_{N(v)}^{(k)} = \text{AGGREGATE}^{(k)} \left(\left\{ \boldsymbol{h}_{u}^{(k-1)} : u \in N(v) \right\} \right)$$

2. Update current node representation $h_v^{(k)} = \text{COMBINE}^{(k)} \left(h_v^{(k-1)}, m_{N(v)}^{(k)} \right)$

The basic GNN

[Merkwirth and Lengauer '05; Scarselli et al. '09]

$$\boldsymbol{m}_{N(v)} = \text{AGGREGATE}(\{\boldsymbol{h}_u : u \in N(v)\}) = \sum_{u \in N(v)} \boldsymbol{h}_u$$

$$COMBINE(\boldsymbol{h}_{v}, \boldsymbol{m}_{N(v)}) = \sigma(W_{self}\boldsymbol{h}_{v} + W_{neigh}\boldsymbol{m}_{N(v)} + \boldsymbol{b})$$
Trainable parameters
Non-linearity (e.g., tanh or ReLU)

Aggregation functions

$$m_{N(v)} = AGGREGATE(\{h_u : u \in N(v)\}) = \bigoplus_{u \in N(v)} h_u$$

Other element-wise aggregators, e.g.:
Maximization, averaging

Grey boxes: aggregation functions that we learn

Grey boxes: aggregation functions that we learn

Figures by Leskovec

Use the same aggregation functions for all nodes

Can generate encodings for previously unseen nodes & graphs!

Outline (applied techniques)

1. GNNs overview

2. Integer programming with GNNs

- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL

Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS'19

Integer programming solvers

Most popular tool for solving combinatorial problems

Routing

Manufacturing

Scheduling

Planning

Finance

Integer and linear programming

Ellen Vitercik, AAAI'24 tutorial

Ellen Vitercik, AAAI'24 tutorial

This section: Variable selection

Ellen Vitercik, AAAI'24 tutorial

Variable selection policies (VSPs)

Score-based variable selection policies:

At leaf Q, branch on variable z_i maximizing score $(Q, i) \in \mathbb{R}$

Many options! Little known about which to use when

Gauthier, Ribière, Math. Prog. '77; Beale, Annals of Discrete Math. '79; Linderoth, Savelsbergh, INFORMS JoC '99; Achterberg, Math. Prog. Computation '09; Gilpin, Sandholm, Disc. Opt. '11; ...

Variable selection policy example

At node j with LP objective value z(j):

- Let $z_i^+(j)$ be the LP objective value after setting $x_i = 1$
- Let $z_i^-(j)$ be the LP objective value after setting $x_i = 0$

VSP example: Branch on the variable x_i that maximizes $(z(j) - z_i^+(j))(z(j) - z_i^-(j))$

In more detail, scoring rule is $\max\{z(j) - z_i^+(j), 10^{-6}\} \cdot \max\{z(j) - z_i^-(j), 10^{-6}\}$:

If $z(j) - z_i^+(j) = 0$, would lose information stored in $z(j) - z_i^-(j)$)

Strong branching

Challenge: Computing $z_i^-(j)$, $z_i^+(j)$ requires solving a lot of LPs

- Computing all LP relaxations referred to as **strong-branching**
- Very time intensive

Pro: Strong branching leads to small search trees

Idea: Train an ML model to imitate strong-branching Khalil et al. [AAAI'16], Alvarez et al. [INFORMS JoC'17], Hansknecht et al. [arXiv'18] **This section:** using a GNN

Outline (applied techniques)

- 1. GNNs overview
- 2. Integer programming with GNNs
 - i. Machine learning formulation
 - ii. Baselines
 - iii. Experiments
 - iv. Additional research
- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL

Problem formulation

Goal: learn a policy $\pi(x_i | s_t)$

Probability of branching on variable x_i when solver is in state s_t

Approach (imitation learning):

- Run strong branching on training set of instances
- Collect dataset of (state, variable) pairs $S = \{(s_i, x_{i^*})\}_{i=1}^N$
- Learn policy π_{θ} with training set S

State encoding

State *s_t* of B&B encoded as a **bipartite graph** with **node** and **edge features**

$$\begin{array}{ll} \max & 9x_1 + 5x_2 + 6x_3 + 4x_4 \\ \text{s.t.} & 6x_1 + 3x_2 + 5x_3 + 2x_4 \leq 10 & (c_1) \\ & x_3 + x_4 \leq 10 & (c_2) \\ & -x_1 + x_3 \leq 0 & (c_3) \\ & -x_2 + x_4 \leq 0 & (c_4) \\ & x_1, x_2, x_3, x_4 \in \{0, 1\} \end{array}$$

State encoding

State *s_t* of B&B encoded as a **bipartite graph** with **node** and **edge features**

• Edge feature: constraint coefficient

• Example node features:

- Constraints:
 - Cosine similarity with objective
 - Tight in LP solution?
- Variables:
 - Objective coefficient
 - Solution value equals upper/lower bound?

GNN structure

GNN structure

1. Pass from variables \rightarrow constraints

$$\boldsymbol{c}_i \leftarrow f_C\left(\boldsymbol{c}_i, \sum_{j:(i,j)\in E} g_C(\boldsymbol{c}_i, \boldsymbol{v}_j, \boldsymbol{e}_{ij})\right)$$

2. Pass from constraints \rightarrow variables $\boldsymbol{v}_j \leftarrow f_V\left(\boldsymbol{v}_j, \sum_{i:(i,j)\in E} g_V(\boldsymbol{c}_i, \boldsymbol{v}_j, \boldsymbol{e}_{ij})\right)$

GNN structure

3. Compute distribution over variables

Outline (applied techniques)

- 1. GNNs overview
- 2. Integer programming with GNNs
 - i. Machine learning formulation
 - ii. Baselines
 - iii. Experiments
 - iv. Additional research
- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL

Reliability pseudo-cost branching (RPB)

Rough idea:

- Goal: estimate $z(j) z_i^+(j)$ w/o solving the LP with $x_i = 1$
- Estimate = avg change after setting $x_i = 1$ elsewhere in tree This is the "pseudo-cost"
- "Reliability": do strong branching if estimate is "unreliable" E.g., early in the tree

Default branching rule of SCIP (leading open-source solver): $\widetilde{\Delta}_{i}^{+}(j) \cdot \widetilde{\Delta}_{i}^{-}(j)$ Estimate of $z(j) - z_{i}^{+}(j)$ Estimate of $z(j) - z_{i}^{-}(j)$ Technically, $\max{\widetilde{\Delta}_{i}^{+}(j), 10^{-6}} \cdot \max{\widetilde{\Delta}_{i}^{-}(j), 10^{-6}}$

Learning to rank approaches

Predict which variable **strong branching** would rank highest using models other than GNNs

• Khalil et al. [AAAI'16]:

Use learning-to-rank algorithm **SVM**^{rank} [Joachims, KDD'06]

- Hansknecht et al. [arXiv'18]: Use learning-to-rank alg lambdaMART [Burges, Learning'10]
- Alvarez et al. [INFORMS JoC'17]: Use **regression trees**

Outline (applied techniques)

- 1. GNNs overview
- 2. Integer programming with GNNs
 - i. Machine learning formulation
 - ii. Baselines

iii. Experiments

- iv. Additional research
- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL

Set covering instances

Train and test on "easy" instances: 1000 columns, 500 rows

Model	Time	Wins	Nodes	
Runtime in seconds with a timeout	of 1 hour $\pm 6.1\%$	0/100	17±13.7%	
Reliability Number instances with fastest runtime / number solved 54=20.8%				
Regression trees	9.28±4.9%	0/10 Size	of B&B tree 1%	
SVMrank	8.10±3.8%	1/100	165±8.2%	
lambdaMART	7.19±4.2%	14/100	167±9.0%	
GNN	6.59 ±3.1%	85 /100	134±7.6%	

Set covering instances

Train and test on "easy" instances: 1000 columns, 500 rows

Model	Time	Wins	Nodes
Full strong branching	17.30±6.1%	0/100	17±13.7%
Reliability pseudo-cost	8.98±4.8%	0/100	54 ±20.8%
Regression trees	9.28±4.9%	0/100	187±9.4%
SVMrank	8.10±3.8%	1/100	165±8.2%
lambdaMART	7.19±4.2%	14/100	167±9.0%
GNN	6.59 ±3.1%	85 /100	134±7.6%
GNN is **faster than SCIP** default VSP (reliability pseudo-cost)

Model	Time	Wins	Nodes
Full strong branching	17.30±6.1%	0/100	17±13.7%
Reliability pseudo-cost	8.98±4.8%	0/100	54 ±20.8%
Regression trees	9.28±4.9%	0/100	187±9.4%
SVMrank	8.10±3.8%	1/100	165±8.2%
lambdaMART	7.19±4.2%	14/100	167±9.0%
GNN	6.59 ±3.1%	85 /100	134±7.6%

Train: "easy"; test: "hard" instances w/ 1000 columns, 2000 rows

Model	Time	Wins	Nodes
Full strong branching	Timed out	0/0	N/A
Reliability pseudo-cost	1677.98±3.0%	4/65	47299±4.9%
Regression trees	2869.21±3.2%	0/35	59013±9.3%
SVMrank	2389.92±2.3%	0/47	42120±5.4%
lambdaMART	2165.96±2.0%	0/54	45319±3.4%
GNN	1489.91 ±3.3%	66/70	29981 ±4.9%

Performance generalizes to larger instances

Model	Time	Wins	Nodes
Full strong branching	Timed out	0/0	N/A
Reliability pseudo-cost	1677.98±3.0%	4/65	47299±4.9%
Regression trees	2869.21±3.2%	0/35	59013±9.3%
SVMrank	2389.92±2.3%	0/47	42120±5.4%
lambdaMART	2165.96±2.0%	0/54	45319±3.4%
GNN	1489.91 ±3.3%	66/70	29981 ±4.9%

Similar results for auction design & facility location problems

Outline (applied techniques)

- 1. GNNs overview
- 2. Integer programming with GNNs
 - i. Machine learning formulation
 - ii. Baselines
 - iii. Experiments
 - iv. Additional research
- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL

Additional research

CPU-friendly approaches

Gupta et al., NeurIPS'20

Bipartite representation inspired many follow-ups

Nair et al., '20; Sonnerat et al., '21; Wu et al., NeurIPS'21; Huang et al. ICML'23; ...

Survey on Combinatorial Optimization & Reasoning w/ GNNs: Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR'23

Outline (applied techniques)

- 1. GNNs overview
- 2. Integer programming with GNNs
- **3. Neural algorithmic alignment**
- 4. Learning greedy heuristics with RL

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR'20 Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR'23

Problem-solving approaches

- + Operate on raw inputs
- + Generalize on noisy conditions
- + Models reusable across tasks
- Require big data
- Unreliable when extrapolating
- Lack of interpretability

- + Trivially strong generalization
- + Compositional (subroutines)
- + Guaranteed correctness
- + Interpretable operations
- Input must match spec
- Not robust to task variations

Is it possible to get the best of both worlds?

GNNs + combinatorial optimization

Lots of awesome research! E.g.,

Traveling salesman problem

E.g., Vinyals et al., '15; Joshi et al., '19; ...

Boolean satisfiability

E.g., Selsam et al., '19; Cameron et al., '20; ...

This section: Neural graph algorithm execution Aligns well with theoretical sections of this tutorial

Neural graph algorithm execution

Key observation: Many algorithms share related **subroutines** E.g. Bellman-Ford & BFS enumerate sets of edges adjacent to a node

Neural graph algorithm execution

💡 Learn several algorithms **simultaneously** <

If we already have a classical algorithm for the problem... **Why not just run that algorithm?** Will answer soon, but first: a few words on the pipeline

Encoder network f

• E.g., makes sure input is in correct dimension for next step

Processor network *P*

- Graph neural network
- Run multiple times (termination determined by a NN)

Decoder network g

• Transform's GNNs output into algorithmic output

Multi-task approach

- Learn a **single** processor network *P* for related problems
- Learn **task-specific** encoder, decoder functions f_A , g_A

If we're just teaching a NN to **imitate** a classical algorithm... **Why not just run that algorithm?**

Classical algorithms are designed with **abstraction** in mind Enforce their inputs to conform to stringent preconditions

However, we design algorithms to solve **real-world** problems!

- Assume we have real-world inputs

 ...but algorithm only admits abstract inputs
- Could try **manually** converting from one input to another

- Alternatively, **replace** human feature extractor with NN
 - Still apply same combinatorial algorithm
- Issue: algorithms typically perform discrete optimization
 - Doesn't play nicely with gradient-based optimization of NNs

- Second (more fundamental) issue: data efficiency
 - Real-world data is often incredibly rich
 - We still have to compress it down to scalar values
- The algorithmic solver commits to using this scalar Assumes it is perfect!

- Second (more fundamental) issue: data efficiency
 - Real-world data is often incredibly rich
 - We still have to compress it down to scalar values
- The algorithmic solver commits to using this scalar Assumes it is perfect!

If there's insufficient training data to estimate the scalars:

- Alg will give a **perfect solution**
- ...but in a **suboptimal environment**

1. On abstract inputs, learn encode-process-decode functions

Ellen Vitercik, AAAI'24 tutorial

Figure by Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR'23

After training on abstract inputs, processor *P*:

- 1. Admits useful gradients
- 2. Operates over high-dim latent space (better use of data)

2. Set up encode-decode functions for natural inputs/outputs

Figure by Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR'23

Figure by Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR'23

Outline (applied techniques)

- 1. GNNs overview
- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment
 - i. Motivation
 - ii. Example algorithms
 - iii. Experiments
 - iv. Understanding max-aggregation
 - v. Additional research
- 4. Learning greedy heuristics with RL

Breadth-first search

• Source node *s*

• Initial input
$$x_i^{(1)} = \begin{cases} 1 & \text{if } i = s \\ 0 & \text{if } i \neq s \end{cases}$$

• Node is reachable from *s* if any of its neighbors are reachable:

$$x_{i}^{(t+1)} = \begin{cases} 1 & \text{if } x_{i}^{(t)} = 1\\ 1 & \text{if } \exists j \text{ s.t. } (j,i) \in E \text{ and } x_{j}^{(t)} = 1\\ 0 & \text{else} \end{cases}$$

• Algorithm output at round $t: y_i^{(t)} = x_i^{(t+1)}$

Bellman-Ford (shortest path)

• Source node *s*

• Initial input
$$x_i^{(1)} = \begin{cases} 0 & \text{if } i = s \\ \infty & \text{if } i \neq s \end{cases}$$

• Node is reachable from *s* if any of its neighbors are reachable Update distance to node as minimal way to reach neighbors $x_i^{(t+1)} = \min\left\{x_i^{(t)}, \min_{(j,i)\in E} x_j^{(t)} + e_{ji}\right\}$

Bellman-Ford: Message passing

Key idea (roughly speaking): Train GNN so that $h_u^{(t)} \approx x_u^{(t)}$, $\forall t$ (Really, so that a function of $h_u^{(t)} \approx x_u^{(t)}$)

Outline (applied techniques)

- 1. GNNs overview
- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment
 - i. Motivation
 - ii. Example algorithms

iii. Experiments

- iv. Understanding max-aggregation
- v. Additional research
- 4. Learning greedy heuristics with RL

Shortest-path predecessor prediction

- Mean aggregator
- -Sum aggregator
- -Max aggregator
- Trained on 20-node graphs
- Variety of graph types in train/test set: Erdős-Reyni, Barabási-Albert, ...

Improvement of max-aggregator increases with size It **aligns** better with underlying algorithm [Xu et al., ICLR'20]

Learning multiple algorithms

Learn to execute both BFS and Bellman-Ford **simultaneously**

Comparisons

- (no-reach): Learn Bellman-Ford alone
 - Doesn't simultaneously learn reachability
- (no-algo):
 - Don't supervise intermediate steps
 - Learn predecessors directly from input $x_i^{(1)}$

Shortest-path predecessor prediction

-Max aggregator

Max aggregator (no-reach)

Max aggregator (no-algo)

- Trained on 20-node graphs
- Variety of graph types in train/test set: Erdős-Reyni, Barabási-Albert, ...
- (no-reach) results: positive knowledge transfer
- (no-algo) results: benefit of supervising intermediate steps

Outline (applied techniques)

- 1. GNNs overview
- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment
 - i. Motivation
 - ii. Example algorithms
 - iii. Experiments

iv. Understanding max-aggregation

- v. Additional research
- 4. Learning greedy heuristics with RL

Xu, Zhang, Li, Du, Kawarabayashi, Jegelka, ICLR'21

Shortest-path predecessor prediction

Extrapolation error

- $f: \mathcal{X} \to \mathbb{R}$ is a model trained on $\{(x_i, y_i)\}_{i=1}^n \subset \mathcal{D}$ $y_i = g(x_i)$ for some ground-truth function g
- \mathcal{P} is a **distribution over** $\mathcal{X} \setminus \mathcal{D}$
- $\ell: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a loss function
- Extrapolation error: $\mathbb{E}_{x \sim \mathcal{P}} [\ell(f(x), g(x))]$

ReLU MLP extrapolate linearly

Theorem [Xu et al., ICLR'21, informal]:

- $f: \mathbb{R}^d \to \mathbb{R}$, a 2-layer ReLU MLP trained w/ gradient descent
- Along any direction $v \in \mathbb{R}^d$, f approaches a **linear** function

ReLU MLP extrapolate linearly

Theorem [Xu et al., ICLR'21, informal]:

- $f: \mathbb{R}^d \to \mathbb{R}$, a 2-layer ReLU MLP trained w/ gradient descent
- Along any direction $v \in \mathbb{R}^d$, f approaches a **linear** function
- More formally, let x = tv

• Then
$$f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x}) = f(t\mathbf{v} + h\mathbf{v}) - f(t\mathbf{v}) \rightarrow \beta_{\mathbf{v}}h$$

at a rate $O\left(\frac{1}{t}\right)$

Implications for GNNs

Shortest path: $x_i^{(t)} = \min \left\{ x_i^{(t-1)}, \min_{(j,i) \in E} x_j^{(t-1)} + e_{ji} \right\}$ GNN: $h_i^{(t)} = \sum_{j \in N(i)} \text{MLP} \left(h_i^{(t-1)}, h_j^{(t-1)} \right)$ MLP must learn a **non-linearity**

Implications for GNNs

Shortest path:
$$x_i^{(t)} = \min \left\{ x_i^{(t-1)}, \min_{(j,i) \in E} x_j^{(t-1)} + e_{ji} \right\}$$

GNN: $h_i^{(t)} = \sum_{j \in N(i)} MLP \left(h_i^{(t-1)}, h_j^{(t-1)} \right)$
GNN 2: $h_i^{(t)} = \max_{j \in N(i)} MLP \left(h_i^{(t-1)}, h_j^{(t-1)} \right)$
Predicting shortest path predecessor:
[Veličković et al. ICLR'20]
 $\mathcal{P}_{\text{train}} = \mathcal{P}_{\text{test}}$ $\mathcal{P}_{\text{train}} \neq \mathcal{P}_{\text{test}} \leftarrow 5x \text{ larger graphs}$

- 1. GNNs overview
- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment
 - i. Motivation
 - ii. Example algorithms
 - iii. Experiments
 - iv. Understanding max-aggregation
 - v. Additional research
- 4. Learning greedy heuristics with RL

Additional research

Lots of research in the past few years! E.g.:

- How to achieve algorithmic alignment & theory guarantees
 Xu et al., ICLR'20; Dudzik, Veličković, NeurIPS'22
- **CLRS** benchmark
 - Sorting, searching, dynamic programming, graph algorithms, etc.
 - Veličković et al. ICML'22; Ibarz et al. LoG'22; Bevilacqua et al. ICML'23
- Primal-dual algorithms
 - Numeroso et al., ICLR'23

- 1. GNNs overview
- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment

4. Learning greedy heuristics with RL

Dai, Khalil, Zhang, Dilkina, Song; NeurIPS'17

- 1. GNNs overview
- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL
 - i. Reinforcement learning refresher
 - a. Markov decision processes
 - b. Reinforcement learning
 - ii. Overview: RL for combinatorial optimization
 - iii. Examples: Min vertex cover and max cut
 - iv. RL formulation
 - v. Experiments

Learner interaction with environment

Markov decision processes

S: set of states (assumed for now to be discrete)

A: set of actions

Transition probability distribution P(s' | s, a)Probability of entering state s' from state s after taking action a

Reward function $R: S \rightarrow \mathbb{R}$

Goal: Policy $\pi: S \rightarrow A$ that maximizes total (discounted) reward

Policies and value functions

Value function for a policy:

Expected sum of discounted rewards

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \middle| s_{0} = s, a_{t} = \pi(s_{t}), (s_{t+1}|s_{t}, a_{t}) \sim P\right]$$
Discount factor

$$= R(s) + \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) V^{\pi}(s') \qquad (Bellman equation)$$

Optimal policy and value function

Optimal policy π^* achieves the highest value for every state $V^{\pi^*}(s) = \max_{\pi} V^{\pi}(s)$

Several different ways to find π^*

- Value iteration
- Policy iteration

- 1. GNNs overview
- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL
 - i. Reinforcement learning refresher
 - a. Markov decision processes
 - b. Reinforcement learning
 - ii. Overview: RL for combinatorial optimization
 - iii. Examples: Min vertex cover and max cut
 - iv. RL formulation
 - v. Experiments

Challenge of RL

MDP (*S*, *A*, *P*, *R*):

- S: set of states (assumed for now to be discrete)
- A: set of actions
- Transition probability distribution $P(s_{t+1} | s_t, a_t)$
- Reward function $R: S \rightarrow \mathbb{R}$

RL twist: We don't know *P* or *R*, or too big to enumerate

Q-learning

Q functions:

Like value functions but defined over state-action pairs

$$Q^{\pi}(s,a) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s, a) Q^{\pi}(s', \pi(s'))$$

- I.e., Q function is the value of:
 - 1. Starting in state *s*
 - 2. Taking action *a*
 - 3. Then acting according to π

Q-learning

Q function of the optimal policy
$$\pi^*$$
:
 $Q^*(s, a) = R(s) + \gamma \sum_{\substack{s' \in S \\ s' \in S}} P(s' \mid s, a) \max_{a'} Q^*(s', a')$
 $= R(s) + \gamma \sum_{\substack{s' \in S \\ s' \in S}} P(s' \mid s, a) V^{\pi^*}(s')$

 Q^* is the value of:

- 1. Starting in state *s*
- 2. Taking action a
- 3. Then acting optimally

Q-learning

(High-level) Q-learning algorithm initialize $\hat{Q}(s, a) \leftarrow 0, \forall s, a$ repeat

Observe current state *s* and reward *r* Take action $a = \operatorname{argmax} \hat{Q}(s, \cdot)$ and observe next state *s'* Improve estimate \hat{Q} based on *s*, *r*, *a*, *s'*

Can use function approximation to represent \hat{Q} compactly $\hat{Q}(s,a) = f_{\theta}(s,a)$

- 1. GNNs overview
- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL
 - i. Reinforcement learning refresher
 - ii. Overview: RL for combinatorial optimization
 - iii. Examples: Min vertex cover and max cut
 - iv. RL formulation
 - v. Experiments

RL for combinatorial optimization

Tons of research in this area

Travelling salesman

Bello et al., ICLR'17; Dai et al., NeurIPS'17; Nazari et al., NeurIPS'18; ...

Bin packing

Hu et al., '17; Laterre et al., '18; Cai et al., DRL4KDD'19; Li et al., '20; ...

Maximum cut

Dai et al., NeurIPS'17; Cappart et al., AAAI'19; Barrett et al., AAAI'20; ...

Minimum vertex cover

Dai et al., NeurIPS'17; Song et al., UAI'19; ...

This section: Example of a pioneering work in this space

Ellen Vitercik, AAAI'24 tutorial

Dai, Khalil, Zhang, Dilkina, Song; NeurIPS'17

Overview

Goal: use RL to learn new greedy strategies for graph problems Feasible solution constructed by successively adding nodes to solution

Input: Graph G = (V, E), weights w(u, v) for $(u, v) \in E$

RL state representation: Graph embedding

- 1. GNNs overview
- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL
 - i. Reinforcement learning refresher
 - ii. Overview: RL for combinatorial optimization
 - iii. Examples: Min vertex cover and max cut
 - iv. RL formulation
 - v. Experiments

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

Ellen Vitercik, AAAI'24 tutorial

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:

Greedily add vertices of edge with maximum degree sum

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:

Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes

 $\sum_{\substack{(u,v)\in C}} w(u,v)$ where $C = \{(u,v) \in E : u \in S, v \notin S\}$

If w(u, v) = 1 for all $(u, v) \in E$:

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes $\sum_{w(u, v)} w(u, v)$

where
$$C = \{(u, v) \in E : u \in S, v \notin S\}$$

Greedy: move node from one side of cut to the other Move node that results in the largest improvement in cut weight

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes

where
$$C = \{(u, v) \in E : u \in S, v \notin S\}$$

Greedy: move node from one side of cut to the other Move node that results in the largest improvement in cut weight

Scoring function that guides greedy algorithm

- 1. GNNs overview
- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL
 - i. Reinforcement learning refresher
 - ii. Overview: RL for combinatorial optimization
 - iii. Examples: Min vertex cover and max cut

iv. RL formulation

v. Experiments

RL for combinatorial optimization

Goal: learn a scoring function to guide greedy algorithm

Problem	Greedy operation
Min vertex cover	Insert node into cover
Max cut	Insert node into subset
Traveling salesman	Insert node into sub-tour

RL for combinatorial optimization

Greedy algorithm Reinforcement learning

Partial solution State

Scoring function Q-function

Select best node Greedy policy

Repeat until all edges are covered: 1. Compute node scores 2. Select best node with respect to score 3. Add best node to partial solution

Reinforcement learning formulation

State:

• Goal: encode partial solution $S = (v_1, v_2, ..., v_{|S|}), v_i \in V$

E.g., nodes in independent set, nodes on one side of cut

Reinforcement learning formulation

State:

- Goal: encode partial solution $S = (v_1, v_2, ..., v_{|S|}), v_i \in V$
- Use GNN to compute graph embedding μ Initial node features $x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{else} \end{cases}$

Action: Choose vertex $v \in V \setminus S$ to add to solution

Transition (deterministic): For chosen $v \in V \setminus S$, set $x_v = 1$

Reinforcement learning formulation

Reward: r(S, v) is change in objective when transition $S \rightarrow (S, v)$

Policy (deterministic):
$$\pi(v|S) = \begin{cases} 1 & \text{if } v = \operatorname*{argmax} \hat{Q}(\mu, v') \\ v' \notin S \\ 0 & \text{else} \end{cases}$$

- 1. GNNs overview
- 2. Integer programming with GNNs
- 3. Neural algorithmic alignment
- 4. Learning greedy heuristics with RL
 - i. Reinforcement learning refresher
 - ii. Overview: RL for combinatorial optimization
 - iii. Examples: Min vertex cover and max cut
 - iv. RL formulation

v. Experiments

Min vertex cover

Max cut

TSP

Uniform random points on 2-D grid

Paper's approach

- Initial subtour: 2 cities that are farthest apart
- Repeat the following:
 - Choose city that's farthest from any city in the subtour
 - Insert in position where it causes the smallest distance increase

[Rosenkrantz et al., SIAM JoC'77]

Runtime comparisons

Min vertex cover visualization

Nodes seem to be selected to balance between:

- Degree
- Connectivity of the remaining graph

O Applied techniques

- a. Graph neural networks
 - a. Neural algorithmic alignment
 - b. Variable selection for integer programming
- b. Learning greedy heuristics with RL

2 After the break: Theoretical guarantees

- a. Statistical guarantees for algorithm configuration <-
- b. Algorithms with predictions

Where much of my research has been

Summary

Applied techniques

- a. Graph neural networks
 - a. Neural algorithmic alignment
 - b. Variable selection for integer programming
- b. Learning greedy heuristics with RL

2 Theoretical guarantees

- a. Statistical guarantees for algorithm configuration
- b. Algorithms with predictions

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21

Algorithm configuration

Example: Integer programming solvers

Most popular tool for solving combinatorial (& nonconvex) problems

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has **170-page** manual describing **172** parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

CPX PARAM NODEFILEIND 100 CPX PARAM NODELIM 101 CPX PARAM NODESEL 102 CPX_PARAM_NZREADLIM 103 CPX PARAM OBJDIF 104 CPX_PARAM_OBJLLIM 105 CPX_PARAM_OBJULIM 105 CPX_PARAM_PARALLELMODE 108 CPX_PARAM_PERIND 110 CPX PARAM PERLIM 111 CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30 CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46 CPX_PARAM_POLISHAFTERNODE 115 CPXPARAM_CPUmask 48 CPX_PARAM_POLISHAFTERTIME 116 CPX_PARAM_POLISHTIME (deprecated) 116 CPX_PARAM_POPULATELIM 117 CPX PARAM PPRIIND 118 CPX_PARAM_PREDUAL 119 CPX_PARAM_PREIND 120 CPX_PARAM_PRELINEAR 120 CPX_PARAM_PREPASS 121 CPX_PARAM_PRESLVND 122 CPX PARAM PRICELIM 123 CPX_PARAM_PROBE 123 CPX_PARAM_PROBEDETTIME 124 CPX_PARAM_PROBETIME 124 CPX_PARAM_QPMAKEPSDIND 125 CPX_PARAM_QPMETHOD 138 CPX PARAM OPNZREADLIM 126

CPX PARAM TRELIM 160 CPX_PARAM_TUNINGDETTILIM 160 CPX PARAM TUNINGDISPLAY 162 CPX_PARAM_NUMERICALEMPHASIS_102CPX_PARAM_TUNINGMEASURE_163 CPX_PARAM_TUNINGREPEAT 164 CPX_PARAM_TUNINGTILIM 165 CPX_PARAM_VARSEL 166 CPX_PARAM_WORKDIR 167 CPX_PARAM_WORKMEM 168 CPX PARAM WRITELEVEL 169 CPX PARAM ZEROHALFCUTS 170 CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut 35 CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut 36 CPXPARAM_DistMIP_Rampup_Duration 128 CPXPARAM_LPMethod 136 CPXPARAM_MIP_Cuts_BQP 38 CPXPARAM_MIP_Cuts_LocalImplied 77 CPXPARAM_MIP_Cuts_RLT 136 CPXPARAM_MIP_Cuts_ZeroHalfCut 170 CPXPARAM_MIP_Limits_CutsFactor 52 CPXPARAM_MIP_Limits_RampupDetTimeLimit 127 deprecated: see CPXPARAM_MIP_Limits_RampupTimeLimit 128 CPXPARAM MIP Limits Solutions 79 CPXPARAM MIP Limits StrongCand 154 CPXPARAM_MIP_Limits_StrongIt 154 CPXPARAM_MIP_Limits_TreeMemory 160 CPXPARAM_MIP_OrderType 91 CPXPARAM_MIP_Pool_AbsGap 146 CPXPARAM_MIP_Pool_Capacity 147 CPXPARAM_MIP_Pool_Intensity 149

CPX_PARAM_RANDOMSEED 130 CPX PARAM REDUCE 131 CPX_PARAM_REINV 131 CPX PARAM RELAXPREIND 132 CPX_PARAM_RELOBJDIF 133 CPX PARAM REPAIRTRIES 133 CPX PARAM REPEATPRESOLVE 134 CPX PARAM RINSHEUR 135 CPX_PARAM_RLT 136 CPX_PARAM_ROWREADLIM 141 CPX_PARAM_SCAIND 142 CPX PARAM SCRIND 143 CPX_PARAM_SIFTALG 143 CPX PARAM SIFTDISPLAY 144 CPX_PARAM_SIFTITLIM 145 CPX PARAM SIMDISPLAY 145 CPX_PARAM_SINGLIM 146 CPX_PARAM_SOLNPOOLAGAP_146 CPX_PARAM_SOLNPOOLCAPACITY 147 CPXPARAM_Sifting_Display 144 CPX PARAM SOLNPOOLGAP 148 CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145 CPX PARAM SOLUTIONTARGET CPXPARAM_OptimalityTarget 106 CPX_PARAM_SOLUTIONTYPE 152 CPX_PARAM_STARTALG 139 CPX_PARAM_STRONGCANDLIM 154 CPX_PARAM_STRONGITLIM 154 CPX PARAM SUBALG 99 CPX_PARAM_SUBMIPNODELIMIT 155 CPX_PARAM_SYMMETRY 156 CPX_PARAM_THREADS 157 CPX_PARAM_TILIM 159

CPXPARAM_MIP_Pool_RelGap 148 CPXPARAM_MIP_Pool_Replace 151 CPXPARAM_MIP_Strategy_Branch 39 CPXPARAM MIP Strategy MIOCPStrat 93 CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73 CPXPARAM MIP Strategy VariableSelect 166 CPX PARAM FRACPASS 74 CPXPARAM MIP SubMIP NodeLimit 155 CPXPARAM OptimalityTarget 106 CPXPARAM_Output_WriteLevel 169 CPXPARAM_Preprocessing_Aggregator 19 CPXPARAM_Preprocessing_Fill 19 CPXPARAM Preprocessing Linear 120 CPXPARAM_Preprocessing_Reduce 131 CPXPARAM Preprocessing Symmetry 156 CPXPARAM_Read_DataCheck 54 CPXPARAM Read Scale 142 CPXPARAM_ScreenOutput 143 CPXPARAM Sifting Algorithm 143 CPXPARAM Sifting Iterations 145 CPX PARAM SOLNPOOLREPLACE 151 CPXPARAM Simplex Limits Singularity 146 CPXPARAM_SolutionType 152 CPXPARAM_Threads 157 CPXPARAM_TimeLimit 159 CPXPARAM_Tune_DetTimeLimit 160 CPXPARAM Tune Display 162 CPXPARAM_Tune_Measure 163 CPXPARAM_Tune_Repeat 164 CPXPARAM_Tune_TimeLimit 165 CPXPARAM_WorkDir 167 CPXPARAM_WorkMem 168 CraInd 50

CPX_PARAM_FLOWCOVERS 70 CPX PARAM FLOWPATHS 71 CPX_PARAM_FPHEUR 72 CPX PARAM FRACCAND 73 CPX_PARAM_GUBCOVERS 75 CPX_PARAM_HEURFREQ 76 CPX_PARAM_IMPLBD 76 CPX_PARAM_INTSOLFILEPREFIX 78 CPX_PARAM_COVERS 47 CPX_PARAM_INTSOLLIM 79 CPX PARAM ITLIM 80 CPX_PARAM_LANDPCUTS 82 CPX PARAM LBHEUR 81 CPX_PARAM_LPMETHOD 136 CPX PARAM MCFCUTS 82 CPX_PARAM_MEMORYEMPHASIS CPX PARAM MIPCBREDLP 84 CPX_PARAM_MIPDISPLAY 85 CPX PARAM MIPEMPHASIS 87 CPX_PARAM_MIPINTERVAL 88 CPX PARAM MIPKAPPASTATS 89 CPX_PARAM_MIPORDIND 90 CPX PARAM MIPORDTYPE 91 CPX_PARAM_MIPSEARCH 92 CPX_PARAM_MIQCPSTRAT 93 CPX_PARAM_MIRCUTS 94 CPX PARAM MPSLONGNUM 94 CPX_PARAM_NETDISPLAY 95 CPX PARAM NETEPOPT 96 CPX_PARAM_NETEPRHS 96 CPX PARAM NETFIND 97 CPX_PARAM_NETITLIM 98 CPX PARAM NETPPRIIND 98

CPX_PARAM_BRDIR 39 CPX_PARAM_BTTOL 40 CPX_PARAM_CALCOCPDUALS 41 CPX PARAM CLIOUES 42 CPX_PARAM_CLOCKTYPE 43 CPX PARAM CLONELOG 43 CPX_PARAM_COEREDIND 44 CPX PARAM COLREADLIM 45 CPX_PARAM_CONFLICTDISPLAY 46 CPX_PARAM_CPUMASK 48 CPX PARAM CRAIND 50 CPX_PARAM_CUTLO 51 CPX PARAM CUTPASS 52 CPX_PARAM_CUTSFACTOR 52 CPX PARAM CUTUP 53 83CPX_PARAM_DATACHECK 54 CPX_PARAM_DEPIND 55 CPX_PARAM_DETTILIM 56 CPX PARAM DISICUTS 57 CPX_PARAM_DIVETYPE 58 CPX PARAM DPRIIND 59 CPX_PARAM_EACHCUTLIM 60 CPX PARAM EPAGAP 61 CPX_PARAM_EPGAP 61 CPX PARAM EPINT 62 CPX_PARAM_EPMRK 64 CPX PARAM EPOPT 65 CPX_PARAM_EPPER 65 CPX PARAM EPRELAX 66 CPX_PARAM_EPRHS 67 CPX PARAM FEASOPTMODE 68 CPX_PARAM_FILEENCODING 69

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

What's the best **configuration** for the application at hand?

Best configuration for **routing** problems likely not suited for **scheduling**

Running example: Sequence alignment

Goal: Line up pairs of strings **Applications:** Biology, natural language processing, etc.

vitterchik		

Did you mean: vitercik

Input: Two sequences S and S' Output: Alignment of S and S'

Standard algorithm with parameters $\rho_1, \rho_2, \rho_3 \ge 0$: Return alignment maximizing: (# matches) - $\rho_1 \cdot$ (# mismatches) - $\rho_2 \cdot$ (# indels) - $\rho_3 \cdot$ (# gaps)

> S = A C T GS' = G T C A

Can sometimes access ground-truth, reference alignment

E.g., in computational biology: Bahr et al., Nucleic Acids Res.'01; Raghava et al., BMC Bioinformatics '03; Edgar, Nucleic Acids Res.'04; Walle et al., Bioinformatics'04

Requires extensive manual alignments ...rather just run parameterized algorithm

How to tune algorithm's parameters? "There is **considerable disagreement** among molecular biologists about the **correct choice**" [Gusfield et al. '94]

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA Ground-truth alignment of protein sequences

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPG<mark>EEITYSCKPGY</mark>VSRGGMRKFICPLTGLWP</mark>INTLKCTP EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA Alignment by algorithm with **poorly-tuned** parameters

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA Alignment by algorithm with **poorly-tuned** parameters

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA Alignment by algorithm with **well-tuned** parameters

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

3. Find parameter setting w/ good avg performance over T

Runtime, solution quality, etc.

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

3. Find parameter setting w/ good avg performance over T

On average, output alignment is close to reference alignment

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

3. Find parameter setting w/ good avg performance over *T* **Key question:**

How to find parameter setting with good avg performance?

Key question:

How to find parameter setting with good avg performance?

E.g., for sequence alignment: algorithm by Gusfield et al. ['94]

Many other generic search strategies E.g., Hutter et al. [JAIR'09, LION'11], Ansótegui et al. [CP'09], ...

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

3. Find parameter setting w/ good avg performance over T
Key question (focus of this section):
Will that parameter setting have good future performance?

Key question (focus of this section):

Will that parameter setting have good **future** performance?

Generalization

Key question (focus of this section):

Good performance on **average** over **training set** implies good **future** performance?

Greedy algorithms

Gupta, Roughgarden, ITCS'16 +

First to ask question for algorithm configuration

Clustering

Balcan, Nagarajan, V, White, COLT'17 Garg, Kalai, NeurIPS'18 Balcan, Dick, White, NeurIPS'18 Balcan, Dick, Lang, ICLR'20

Search

Sakaue, Oki, NeurIPS'22

Numerical linear algebra

Bartlett et al., COLT'22

And many other areas...

This section: Main result

Key question (focus of this section): Good performance on **average** over **training set** implies good **future** performance?

Answer this question for any parameterized algorithm where:

Performance is **piecewise-structured** function of parameters

Piecewise constant, linear, quadratic, ...

This section: Main result

Performance is **piecewise-structured** function of parameters

Piecewise constant, linear, quadratic, ...

Algorithmic performance on fixed input

Example: Sequence alignment

Distance between **algorithm's output** given *S*,*S'* and **ground-truth** alignment is p-wise constant

Piecewise structure

Piecewise structure unifies **seemingly disparate** problems:

Integer programming

Balcan, Prasad, Sandholm, V, NeurIPS'21 Balcan, Prasad, Sandholm, V, NeurIPS'22 Balcan, Dick, Sandholm, V, JACM'24

Computational biology

Balcan, DeBlasio, Dick, Kingsford, Sandholm, ♥, STOC'21

Clustering

Balcan, Nagarajan, V, White, COLT'17 Balcan, Dick, White, NeurIPS'18 Balcan, Dick, Lang, ICLR'20

Greedy algorithms

Gupta, Roughgarden, ITCS'16

Mechanism configuration

Balcan, Sandholm, V, OR'24

Ties to a long line of research on machine learning for **revenue maximization** Likhodedov, Sandholm, AAAI'04, '05; Balcan, Blum, Hartline, Mansour, FOCS'05; Elkind, SODA'07; Cole, Roughgarden, STOC'14; Mohri, Medina, ICML'14; Devanur, Huang, Psomas, STOC'16; ...

Primary challenge

Algorithmic performance is a **volatile** function of parameters **Complex** connection between parameters and performance

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance
 - iii. Main result
 - iv. Application: Sequence alignment
 - v. Online algorithm configuration
- 2. Algorithms with predictions

Model

 \mathbb{R}^d : Set of all parameter settings \mathcal{X} : Set of all inputs

Example: Sequence alignment

 \mathbb{R}^3 : Set of alignment algorithm parameter settings \mathcal{X} : Set of sequence pairs

$$S = A C T G$$
$$S' = G T C A$$

One sequence pair
$$x = (S, S') \in \mathcal{X}$$

Algorithmic performance

 $u_{\rho}(x) =$ utility of algorithm parameterized by $\rho \in \mathbb{R}^{d}$ on input xE.g., runtime, solution quality, distance to ground truth, ...

Assume $u_{\rho}(x) \in [-1,1]$ Can be generalized to $u_{\rho}(x) \in [-H,H]$

Model

Standard assumption: Unknown distribution \mathcal{D} over inputs Distribution models specific application domain at hand

E.g., distribution over pairs of DNA strands

E.g., distribution over pairs of protein sequences

Generalization bounds

Key question: For any parameter setting ρ, is average utility on training set close to expected utility?

future

Generalization bounds

Key question: For any parameter setting *ρ*, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq ?$$

Empirical average utility

Expected utility

Good **average empirical** utility **>** Good **expected** utility

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model

ii. Piecewise-structured algorithmic performance

- a. Example: Sequence alignment
- b. Dual function definition
- iii. Main result
- iv. Application: Sequence alignment
- v. Online algorithm configuration
- 2. Algorithms with predictions
Sequence alignment algorithms

Lemma:

For any pair S, S', there's a partition of \mathbb{R}^3 s.t. in any region, algorithm's output is fixed across all parameters in region

Gusfield et al., Algorithmica '94; Fernández-Baca et al., J. of Discrete Alg. '04

Sequence alignment algorithms

Lemma: Defined by $(\max\{|S|, |S'|\})^3$ hyperplanes For any pair S, S', there's a partition of \mathbb{R}^3 s.t. in any region, algorithm's output is fixed across all parameters in region

Piecewise-constant utility function

Corollary:

Utility is piecewise constant function of parameters

Distance between algorithm's output and ground-truth alignment

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance
 - a. Example: Sequence alignment
 - b. Dual function definition
 - iii. Main result
 - iv. Application: Sequence alignment
 - v. Online algorithm configuration
- 2. Algorithms with predictions

Primal & dual classes

 $\begin{aligned} u_{\rho}(x) &= \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^{d} \text{ on input } x \\ \mathcal{U} &= \left\{ u_{\rho} \colon \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^{d} \right\} \quad \text{"Primal" function class} \end{aligned}$

Typically, prove guarantees by bounding **complexity** of \mathcal{U}

Challenge: *U* is gnarly

E.g., in sequence alignment:

- Each domain element is a pair of sequences
- Unclear how to plot or visualize functions u_{ρ}
- No obvious notions of Lipschitz continuity or smoothness to rely on

Primal & dual classes

 $u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^{d} \text{ on input } x$ $\mathcal{U} = \{u_{\rho}: \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^{d}\}$ "Primal" function class

$$\begin{split} u_x^*(oldsymbol{
ho}) &= & ext{utility} ext{ as function of parameters} \ u_x^*(oldsymbol{
ho}) &= & u_{oldsymbol{
ho}}(x) \ \mathcal{U}^* &= & \{u_x^* \colon \mathbb{R}^d o \mathbb{R} \mid x \in \mathcal{X}\} \quad \text{``Dual'' function class} \end{split}$$

- Dual functions have simple, Euclidean domain
- Often have ample structure can use to bound complexity of ${\mathcal U}$

Piecewise-structured functions

Dual functions $u_x^* \colon \mathbb{R}^d \to \mathbb{R}$ are **piecewise-structured**

Clustering algorithm configuration

Integer programming algorithm configuration

Selling mechanism configuration

Greedy algorithm configuration

Computational biology algorithm configuration

Voting mechanism configuration

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance

iii. Main result

- iv. Application: Sequence alignment
- v. Online algorithm configuration
- 2. Algorithms with predictions

Intrinsic complexity

"Intrinsic complexity" of function class \mathcal{G}

- Measures how well functions in \mathcal{G} fit complex patterns
- Specific ways to quantify "intrinsic complexity":
 - VC dimension
 - Pseudo-dimension

VC dimension

Complexity measure for binary-valued function classes \mathcal{F} (Classes of functions $f: \mathcal{Y} \to \{-1,1\}$)

VC dimension

Size of the largest set $\mathcal{S}\subseteq\mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F} = \text{Linear separators in } \mathbb{R}^2$ $VCdim(\mathcal{F}) \ge 3$

VC dimension

Size of the largest set $S \subseteq \mathcal{Y}$ that can be labeled in all $2^{|S|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F} = \text{Linear separators in } \mathbb{R}^2$ VCdim $(\mathcal{F}) \ge 3$

VCdim({Linear separators in \mathbb{R}^d }) = d + 1

Pseudo-dimension

Complexity measure for real-valued function classes G(Classes of functions $g: \mathcal{Y} \rightarrow [-1,1]$)

E.g., affine functions

Pseudo-dimension of \mathcal{G}

Size of the largest set $\{y_1, \dots, y_N\} \subseteq \mathcal{Y}$ s.t.: for some *targets* $z_1, \dots, z_N \in \mathbb{R}$, all 2^N above/below patterns achieved by functions in \mathcal{G}

Sample complexity using pseudo-dim

In the context of **algorithm configuration**:

- $\mathcal{U} = \{u_{\rho} : \rho \in \mathbb{R}^d\}$ measure algorithm **performance**
- For $\epsilon, \delta \in (0,1)$, let $N = O\left(\frac{\operatorname{Pdim}(\mathcal{U})}{\epsilon^2}\log\frac{1}{\delta}\right)$
- With probability at least 1δ over $x_1, \dots, x_N \sim \mathcal{D}, \forall \boldsymbol{\rho} \in \mathbb{R}^d$,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq\epsilon$$

Empirical average utility

Expected utility

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\rho) = g(\rho)$ for some $g \in G$.

Training set of size
$$\tilde{O}\left(\frac{\operatorname{Pdim}(\mathcal{G}^*) + \operatorname{VCdim}(\mathcal{F}^*)\log k}{\epsilon^2}\right)$$
 implies
WHP $\forall \rho$, $|\operatorname{avg}$ utility over training set – exp utility $| \leq \epsilon$

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\rho) = g(\rho)$ for some $g \in G$.

Training set of size
$$\tilde{O}\left(\frac{\operatorname{Pdim}(\mathcal{G}^*) + \operatorname{VCdim}(\mathcal{F}^*)\log k}{\epsilon^2}\right)$$
 implies
WHP $\forall \rho$, $|\operatorname{avg}$ utility over training set – exp utility $| \leq \epsilon$

$$\mathcal{F}, \mathcal{G}$$
 are typically very well structured• \mathcal{G} = set of all constant functions• \mathcal{G} = set of all linear functions in \mathbb{R}^d \Rightarrow Pdim(\mathcal{G}^*) = $O(1)$ \Rightarrow Pdim(\mathcal{G}^*) = $O(d)$

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\rho) = g(\rho)$ for some $g \in G$.

Theorem:

 $\mathsf{Pdim}(\mathcal{U}) = \tilde{O}(\mathsf{Pdim}(\mathcal{G}^*) + \mathsf{VCdim}(\mathcal{F}^*)\log k)$ \uparrow **Primal** function class $\mathcal{U} = \{u_\rho | \rho \in \mathbb{R}^d\}$

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance
 - iii. Main result

iv. Application: Sequence alignment

- v. Online algorithm configuration
- 2. Algorithms with predictions

Piecewise constant dual functions

Lemma:

Utility is piecewise constant function of parameters

Sequence alignment guarantees

Many more applications

Clustering algorithm configuration

Integer programming algorithm configuration

Selling mechanism configuration

Greedy algorithm configuration

Computational biology algorithm configuration

Voting mechanism configuration

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
 - i. Model
 - ii. Piecewise-structured algorithmic performance
 - iii. Main result
 - iv. Application: Sequence alignment
 - v. Online algorithm configuration
- 2. Algorithms with predictions

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Goal: Compete with best parameter setting in hindsight

- Impossible in the worst case
- Under what conditions is online configuration possible?

Ellen Vitercik, AAAI'24 tutorial

Gupta and Roughgarden, ITCS'16; Cohen-Addad, Kanade AISTATS'17; Balcan, Dick, Vitercik, FOCS'18; ...

Outline (theoretical guarantees)

Statistical guarantees for algorithm configuration
 Algorithms with predictions

Algorithms with predictions

Assume you have some **predictions** about your problem, e.g.:

Probability any given element is in a huge database Kraska et al., SIGMOD'18; Mitzenmacher, NeurIPS'18 In caching, the next time you'll see an element Lykouris, Vassilvitskii, ICML'18

Main question:

How to use predictions to improve algorithmic performance?

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Algorithms with predictions
 - a. Searching a sorted array
 - b. Online algorithms
 - c. Additional research

- $\dot{h}(q) = 2$
- **Goal:** Given query q & sorted array A, find q's index (if q in A)
- **Predictor:** h(q) = guess of q's index
- Algorithm: Check A[h(q)]. If q is there, return h(q). Else:

- *q* = 8
- $\hat{h}(q) = 2$
- Goal: Given query q & sorted array A, find q's index (if q in A)
- **Predictor:** h(q) = guess of q's index
- Algorithm: Check A[h(q)]. If q is there, return h(q). Else:
 - If q > A[h(q)], check $A[h(q) + 2^i]$ for i > 1 until find something larger

8

3

6

- *q* = 8
- h(q) = 2
- **Goal:** Given query q & sorted array A, find q's index (if q in A)

15

23

27

32

35

39

- **Predictor:** h(q) = guess of q's index
- Algorithm: Check A[h(q)]. If q is there, return h(q). Else:
 - If q > A[h(q)], check $A[h(q) + 2^i]$ for i > 1 until find something larger
 - Do binary search on interval $(h(q) + 2^{i-1}, h(q) + 2^i)$

- h(q) = 2
- Goal: Given query q & sorted array A, find q's index (if q in A)
- **Predictor:** h(q) = guess of q's index
- Algorithm: Check A[h(q)]. If q is there, return h(q). Else:
 - If q > A[h(q)], check $A[h(q) + 2^i]$ for i > 1 until find something larger
 - Do binary search on interval $(h(q) + 2^{i-1}, h(q) + 2^i)$
 - If q < A[h(q)], symmetric

Analysis:

- Let t(q) be index of q in A or of smallest element larger than q
- Runtime is $O(\log|t(q) h(q)|)$:

Prediction error

- Finding larger/smaller element takes $O(\log|t(q) h(q)|)$ steps
- Binary search takes $O(\log|t(q) h(q)|)$ steps
- Better predictions lead to better runtime
- Runtime **never worse than worst-case** $O(\log|A|)$

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Algorithms with predictions
 - a. Searching a sorted array
 - **b.** Online algorithms
 - c. Additional research

Online algorithms

Full input not revealed upfront, but at some later stage, e.g.:

Matching: nodes of a graph arrive over time Must irrevocably decide whether to match a node when it arrives

Caching: memory access requests arrive over time Must decide what to keep in cache

Scheduling: job lengths not revealed until they terminate Must decide which jobs to schedule when

Competitive ratio (CR)

Standard measure of online algorithm's performance: $CR = \frac{ALG}{OPT}$ Offline optimal solution that knows the entire input

E.g., in matching:

$$CR = \frac{\text{weight of algorithm's matching}}{\text{maximum weight matching}}$$

Online algorithms

Full input not revealed upfront, but at some later stage

What if algorithm receives some **predictions** about input?

Online advertising

e.g., Mahdian et al. [EC'07]; Devanur, Hayes [EC'09]; Muñoz Medina, Vassilvitskii [NeurIPS'17]

• Caching

e.g., Lykouris, Vassilvitskii [ICML'18]

Data structures

e.g., Mitzenmacher [NeurlPS'18]

•
Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Algorithms with predictions
 - a. Searching a sorted array
 - b. Online algorithms
 - i. Overview
 - ii. Ski rental problem
 - iii. Job scheduling
 - c. Additional research

Ski rental problem

Family of problems that revolve around a decision:

- Incur a **recurring expense**, or
- Pay a **single fee** that eliminates the ongoing cost

Ski rental problem

Problem: Skier will ski for unknown number of days

- Can either **rent each day** for \$1/day or **buy** for \$*b*
- E.g., if ski for 5 days and then buy, total price is 5 + b

If ski x days, **optimal clairvoyant** strategy pays $OPT = min\{x, b\}$

Breakeven strategy: Rent for b - 1 days, then buy • $CR = \frac{ALG}{OPT} = \frac{x \mathbf{1}_{\{x < b\}} + (b - 1 + b) \mathbf{1}_{\{x \ge b\}}}{\min\{x, b\}} < 2$ (best deterministic) • Randomized alg. $CR = \frac{e}{e-1}$ [Karlin et al., Algorithmica '94]

Ski rental problem

Prediction y of number of skiing days, error $\eta = |x - y|$

Baseline: Buy at beginning if y > b, else rent all days

Theorem: ALG \leq OPT + η If y small but $x \gg b$, CR can be unbounded

Prediction y of number of skiing days, error $\eta = |x - y|$

Algorithm (with parameter $\lambda \in [0,1]$): If $y \ge b$, buy on start of day $\lceil \lambda b \rceil$; else buy on start of day $\left\lceil \frac{b}{\lambda} \right\rceil$

- If really trust predictions: set $\lambda = 0$ Equivalent to blindly following predictions
- If **don't trust** predictions: set $\lambda = 1$ Equivalent to running the worst-case algorithm

Prediction y of number of skiing days, error $\eta = |x - y|$

Algorithm (with parameter $\lambda \in [0,1]$): If $y \ge b$, buy on start of day $[\lambda b]$; else buy on start of day $\left[\frac{b}{\lambda}\right]$

Theorem: Algorithm has $CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$

- If predictor is perfect ($\eta = 0$), **CR is small** ($\leq 1 + \lambda$)
- No matter how big η is, setting $\lambda = 1$ recovers baseline CR = 2

Theorem: Algorithm has $CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$ **Proof sketch:** If $y \ge b$, buys on start of day $[\lambda b]$ $\frac{x}{x}$ if $x < [\lambda b]$ ALG $\overline{OPT} = 1$

Theorem: Algorithm has $CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$ **Proof sketch:** If $y \ge b$, buys on start of day $[\lambda b]$ $\frac{ALG}{OPT} = \begin{cases} \frac{x}{x} & \text{if } x < [\lambda b] \\ \frac{[\lambda b] - 1 + b}{x} & \text{if } [\lambda b] \le x \le b \end{cases}$

Theorem: Algorithm has $CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$ **Proof sketch:** If $y \ge b$, buys on start of day $[\lambda b]$ $\frac{ALG}{OPT} = \begin{cases} \frac{x}{x} & \text{if } x < [\lambda b] \\ \frac{[\lambda b] - 1 + b}{x} & \text{if } [\lambda b] \le x \le b \\ \frac{[\lambda b] - 1 + b}{b} & \text{if } [\lambda b] \le x \le b \end{cases}$ Worst when $x = [\lambda b]$ and $CR = \frac{b + [\lambda b] - 1}{[\lambda b]} \le \frac{1 + \lambda}{\lambda}$; similarly for y < b

Design principals

Consistency:

- Predictions are perfect \Rightarrow recover offline optimal
- Algorithm is α -consistent if $CR \rightarrow \alpha$ as error $\eta \rightarrow 0$

Robustness:

- Predictions are terrible \Rightarrow no worse than worst-case
- Algorithm is β -consistent if $CR \leq \beta$ for all η
- E.g., ski rental: $CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$ $(1+\lambda)$ -consistent, $\left(\frac{1+\lambda}{\lambda}\right)$ -robust

Bounds are tight [Gollapudi, Panigrahi, ICML'19; Angelopoulos et al., ITCS'20]

For
$$i \in [k]$$
, define $q_i \leftarrow \left(\frac{b-1}{b}\right)^{\ell-i} \frac{1}{b\left(1-(1-1/b)^{\ell}\right)}$
Buy on day $j \in [\ell]$ sampled from distribution defined by q_1, \dots, q_{ℓ}

Randomized algorithm

Theorem:
$$CR \le \min\left\{\frac{1}{1-\exp(-(\lambda-1/b))}, \frac{\lambda}{1-\exp(-\lambda)}\left(1+\frac{\eta}{OPT}\right)\right\}$$

• $\left(\frac{\lambda}{1-\exp(-\lambda)}\right)$ -consistent, $\left(\frac{1}{1-\exp(-(\lambda-1/b))}\right)$ -robust
• Bounds are **tight** [Wei, Zhang, NeurIPS'20]

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Algorithms with predictions
 - a. Searching a sorted array
 - b. Online algorithms
 - i. Overview
 - ii. Ski rental problem
 - iii. Job scheduling
 - c. Additional research

Job scheduling

- Task: schedule n jobs on a single machine
- Job *j* has **unknown** processing time x_j
- Goal: minimize **sum of completion times** of the jobs

i.e., if job j completes at time c_j , goal is to minimize $\sum c_j$

Job scheduling

- Task: schedule n jobs on a single machine
- Job *j* has **unknown** processing time x_j
- Goal: minimize **sum of completion times** of the jobs *i.e., if job j completes at time c_i, goal is to minimize* $\sum c_i$
- Can switch between jobs

Job scheduling

Optimal solution if processing times x_j 's are known: schedule jobs in increasing order of x_i

Round robin

Algorithm with a competitive ratio of 2: **round robin** Schedule 1 unit of time per remaining job, round-robin

Round-robin over k jobs \equiv run jobs simultaneously at rate of $\frac{1}{k}$

Simultaneous round robin:

Algorithms-with-predictions approach

Predictions y_1, \dots, y_n of x_1, \dots, x_n with $\eta = \sum_{i=1}^n |y_i - x_i|$

If really trust predictions: schedule in increasing order of y_i "Shortest predicted job first (SPJF)"

If **don't trust** predictions: round-robin (RR)

Algorithms-with-predictions approach

Algorithm: Preferential round-robin (with parameter $\lambda \in (0,1)$) Run SPJF and RR **simultaneously**

- SPJF at a rate λ
- RR at a rate 1λ

Example: $\lambda = \frac{1}{2}$, 3 jobs, shortest predicted job is **blue** job

• Blue job at a rate of
$$\lambda + (1 - \lambda) \cdot \frac{1}{3} = \frac{2}{3}$$

• Yellow job at a rate of
$$(1 - \lambda) \cdot \frac{1}{3} = \frac{1}{6}$$

• **Black** job at a rate of
$$(1 - \lambda) \cdot \frac{1}{3} = \frac{1}{6}$$

Preferential round-robin

Algorithm: Preferential round-robin (with parameter $\lambda \in (0,1)$) Run SPJF and RR **simultaneously**

- SPJF at a rate λ
- RR at a rate 1λ

Theorem: Algorithm's competitive ratio is

$$CR \le \min \left\{ \frac{1}{\lambda} \left(1 + \frac{2\eta}{n} \right), \frac{1}{1 - \lambda} \cdot \frac{2}{1} \right\}$$

$$CR \text{ of SPJF} \quad CR \text{ of RR}$$
So it's $\frac{1}{\lambda}$ -consistent, $\frac{2}{1 - \lambda}$ -robust

Outline (theoretical guarantees)

- 1. Statistical guarantees for algorithm configuration
- 2. Algorithms with predictions
 - a. Searching a sorted array
 - b. Online algorithms
 - c. Additional research

Just scratched the surface

Online advertising

Mahdian, Nazerzadeh, Saberi, EC'07; Devanur, Hayes, EC'09; Medina, Vassilvitskii, NeurIPS'17; ...

Caching

Lykouris, Vassilvitskii, ICML'18; Rohatgi, SODA'19; Wei, APPROX-RANDOM'20; ...

Frequency estimation

Hsu, Indyk, Katabi, Vakilian, ICLR'19; ...

Learning low-rank approximations

Indyk, Vakilian, Yuan, NeurIPS'19; ... Scheduling

Mitzenmacher, ITCS'20; Moseley, Vassilvitskii, Lattanzi, Lavastida, SODA'20; ...

algorithms-with-predictions.github.io

Closely related: the "predict-then-optimize" framework

Elmachtoub, Grigas, Management Science '22; Elmachtoub et al., ICML'20; ...

1 Applied techniques

- a. Graph neural networks
 - a. Neural algorithmic alignment
 - b. Variable selection for integer programming
- b. Learning greedy heuristics with RL

2 Theoretical guarantees

- a. Statistical guarantees for algorithm configuration
- b. Algorithms with predictions

3 Future directions

Outline (future directions)

1. Tighter statistical bounds

- 2. Multi-task algorithm design: Knowledge transfer
- 3. Size generalization
- 4. ML as a toolkit for theory

Future work: Tighter statistical bounds

WHP $\forall \boldsymbol{\rho}$, $|\mathbf{avg}| utility over training set - exp utility| <math>\leq \epsilon$ given training set of size $\tilde{O}\left(\frac{1}{\epsilon^2}(\operatorname{Pdim}(\mathcal{G}^*) + \operatorname{VCdim}(\mathcal{F}^*)\log k)\right)$

Number of boundary functions

k is often exponential Can lead to large bounds

I expect this can sometimes be avoided! Would require more information about duals

Outline (future directions)

1. Tighter statistical bounds

2. Multi-task algorithm design: Knowledge transfer

- 3. Size generalization
- 4. ML as a toolkit for theory

Future work: Knowledge transfer

- Training a GNN to solve multiple related problems... can sometimes lead to better **single-task** performance
- E.g., training reachability and shortest-paths (grey line) v.s. just training shortest-paths (yellow line)

Future work: Knowledge transfer

- Training a GNN to solve multiple related problems...
 can sometimes lead to better single-task performance
- Can we understand **theoretically** why this happens?
 - For which sets of algorithms can we expect **knowledge transfer**?

Outline (future directions)

- 1. Tighter statistical bounds
- 2. Multi-task algorithm design: Knowledge transfer
- 3. Size generalization
- 4. ML as a toolkit for theory

Future work: Size generalization

Machine-learned algorithms can scale to larger instances

Applied research: Dai et al., NeurIPS'17; Veličković, et al., ICLR'20; ... **Goal:** eventually, solve problems **no one's ever been able to solve**

However, size generalization is not immediate! It depends on:

• The machine-learned algorithm

Is the algorithm scale sensitive?

Example [Xu et al., ICLR'21]:

- Algorithms represents by GNNs **do generalize**
- Algs represented by MLPs don't generalize across size

Future work: Size generalization

Machine-learned algorithms can scale to larger instances

Applied research: Dai et al., NeurIPS'17; Veličković, et al., ICLR'20; ...

Goal: eventually, solve problems **no one's ever been able to solve**

However, size generalization is not immediate! It depends on:

• The machine-learned algorithm

Is the algorithm scale sensitive?

• The problem instances

As size scales, what features must be preserved?

Future work: Size generalization

Can you:

- 1. **Shrink** a set of big integer programs graphs
- 2. Learn a good algorithm on the small instances
- 3. Apply what you learned to the **big** instances?

. . .

Outline (future directions)

- 1. Tighter statistical bounds
- 2. Multi-task algorithm design: Knowledge transfer
- 3. Size generalization
- 4. ML as a toolkit for theory

Future work: ML as a toolkit for theory

E.g., Dai et al. [NeurIPS'17] write that their RL alg discovered: "New and interesting" greedy strategies for MAXCUT and MVC "which **intuitively make sense** but have **not been analyzed** before," thus could be a "good **assistive tool** for discovering new algorithms." Thank you! Questions?