Refined bounds for algorithm configuration: The knife-edge of dual class approximability

Nina Balcan, Tuomas Sandholm, Ellen Vitercik
Algorithms typically come with many tunable parameters. Significant impact on runtime, solution quality, ...

Hand-tuning is time-consuming, tedious, and error-prone.
Automated algorithm configuration

Goal: Automate algorithm configuration via machine learning

Algorithmically find good parameter settings using a *set of “typical” inputs* from application at hand

Training set
Automated configuration procedure

1. Fix parameterized algorithm (e.g., CPLEX)
2. Receive set S of “typical” inputs from unknown distribution
3. Return parameter setting with good avg performance over S

Runtime, solution quality, memory usage, etc.
Automated configuration procedure

Key question (focus of talk): Will those parameters have good expected performance?
Overview of main result

Key question (focus of talk):
Will those parameters have good *expected* performance?

“Yes” when algorithmic performance as function of parameters can be approximated by a simple function
Overview of main result

Observe this structure, e.g.,

in integer programming algorithm configuration

Algorithmic performance $f^*(r)$

Simple approximating function $g^*(r)$

Parameter r
Overview of main result: a dichotomy

If approximation holds under the L^∞-norm:
We provide strong guarantees

\[\sup_{r} |f^*(r) - g^*(r)| \text{ is small} \]

Algorithmic performance $f^*(r)$
Simple approximating function $g^*(r)$

Parameter r
Overview of main result: a dichotomy

If approximation holds under the L^∞-norm:
 We provide strong guarantees
If approximation only holds under the L^p-norm for $p < \infty$:
 Not possible to provide strong guarantees in worst case

Algorithmic performance $f^*(r)$
Simple approximating function $g^*(r)$

\[
\sqrt[p]{\int |f^*(r) - g^*(r)|^p \, dr}
\]
is small
Model
Model

\(\mathcal{X} \): Set of all inputs (e.g., integer programs)
\(\mathbb{R}^d \): Set of all parameter settings (e.g., CPLEX parameters)

Standard assumption: Unknown distribution \(\mathcal{D} \) over inputs
E.g., represents scheduling problem airline solves day-to-day
“Algorithmic performance”

$$f_r(x) = \text{utility of algorithm parameterized by } r \in \mathbb{R}^d \text{ on input } x$$

E.g., runtime, solution quality, memory usage, ...

Assume $$f_r(x) \in [-1,1]$$

Can be generalized to $$f_r(x) \in [-H, H]$$
Generalization bounds
Generalization bounds

Key question: For any parameter setting \(r \), Does good avg utility on training set imply good exp utility?

Formally: Given samples \(x_1, \ldots, x_N \sim \mathcal{D} \), for any \(r \),

\[
\left| \frac{1}{N} \sum_{i=1}^{N} f_r(x_i) - \mathbb{E}_{x \sim \mathcal{D}}[f_r(x)] \right| \leq ?
\]

Empirical average utility
Generalization bounds

Key question: For any parameter setting \(r \), Does good \text{avg} utility on training set imply good \text{exp} utility?

Formally: Given samples \(x_1, \ldots, x_N \sim \mathcal{D} \), for any \(r \),

\[
\left| \frac{1}{N} \sum_{i=1}^{N} f_r(x_i) - \mathbb{E}_{x \sim \mathcal{D}} [f_r(x)] \right| \leq ?
\]

Expected utility
Generalization bounds

Key question: For any parameter setting \(\mathbf{r} \), Does good \textit{avg} utility on training set imply good \textit{exp} utility?

Formally: Given samples \(x_1, \ldots, x_N \sim \mathcal{D} \), for any \(\mathbf{r} \),

\[
\left| \frac{1}{N} \sum_{i=1}^{N} f_{\mathbf{r}}(x_i) - \mathbb{E}_{x \sim \mathcal{D}}[f_{\mathbf{r}}(x)] \right| \leq ?
\]

Typically, answer by bounding the \textbf{intrinsic complexity} of

\[
\mathcal{F} = \{ f_{\mathbf{r}} \mid \mathbf{r} \in \mathbb{R}^d \} \]
Generalization bounds

Challenge: Class $\mathcal{F} = \{f_r: \mathcal{X} \to \mathbb{R} \mid r \in \mathbb{R}^d\}$ is gnarly

E.g., in integer programming algorithm configuration:

- Each domain element is an IP
- Unclear how to plot or visualize functions f_r
- No obvious notions of Lipschitzness or smoothness to rely on
Dual functions
Dual classes

\[f_r(x) = \text{utility of algorithm parameterized by } r \in \mathbb{R}^d \text{ on input } x \]

\[\mathcal{F} = \{ f_r : \mathcal{X} \rightarrow \mathbb{R} \mid r \in \mathbb{R}^d \} \quad \text{“Primal” function class} \]

\[f_x^*(r) = \text{utility as function of parameters} \]
\[f_x^*(r) = f_r(x) \]

\[\mathcal{F}^* = \{ f_x^* : \mathbb{R}^d \rightarrow \mathbb{R} \mid x \in \mathcal{X} \} \quad \text{“Dual” function class} \]

- Dual functions have simple, Euclidean domain
- Often have ample structure can use to bound complexity of \(\mathcal{F} \)
Dual function approximability

\[\mathcal{F} = \{ f_r \mid r \in \mathbb{R}^d \} \]
Sets of functions mapping \(\mathcal{X} \) to \(\mathbb{R} \)

\[\mathcal{G} = \{ g_r \mid r \in \mathbb{R}^d \} \]
Dual class \(\mathcal{G}^* (\gamma, p) \)-approximates \(\mathcal{F}^* \) if for all \(x \in \mathcal{X} \),

\[\| f_x^* - g_x^* \|_p = \sqrt[p]{\int_{\mathbb{R}^d} |f_x^*(r) - g_x^*(r)|^p \, dr} \leq \gamma. \]
Main result: Upper bound
Generalization upper bound

\[\mathcal{F} = \{ f_r \mid r \in \mathbb{R}^d \} \]
\[\mathcal{G} = \{ g_r \mid r \in \mathbb{R}^d \} \]
Sets of functions mapping \(\mathcal{X} \) to \(\mathbb{R} \)

With high probability over the draw of \(S \sim \mathcal{D}^N \), for any \(r \),

\[
\left| \frac{1}{N} \sum_{x \in S} f_r(x) - \mathbb{E}_{x \sim \mathcal{D}} [f_r(x)] \right| = \tilde{O} \left(\frac{1}{N} \sum_{x \in S} \| f_x^* - g_x^* \|_\infty + \mathcal{R}_S (\mathcal{G}) + \sqrt{\frac{1}{N}} \right)
\]

Average utility over the training set
Generalization upper bound

\[\mathcal{F} = \{ f_r \mid r \in \mathbb{R}^d \} \]

\[\mathcal{G} = \{ g_r \mid r \in \mathbb{R}^d \} \]

Sets of functions mapping \(\mathcal{X} \) to \(\mathbb{R} \)

With high probability over the draw of \(\mathcal{S} \sim \mathcal{D}^N \), for any \(r \),

\[
\left| \frac{1}{N} \sum_{x \in \mathcal{S}} f_r(x) - \mathbb{E}_{x \sim \mathcal{D}} [f_r(x)] \right| = \tilde{O} \left(\frac{1}{N} \sum_{x \in \mathcal{S}} \| f^*_x - g^*_x \|_{\infty} + \hat{\mathcal{R}}_{\mathcal{S}} (\mathcal{G}) + \sqrt{\frac{1}{N}} \right)
\]

Expected utility
Generalization upper bound

\[\mathcal{F} = \{ f_r \mid r \in \mathbb{R}^d \} \]
\[\mathcal{G} = \{ g_r \mid r \in \mathbb{R}^d \} \] Sets of functions mapping \(\mathcal{X} \) to \(\mathbb{R} \)

With high probability over the draw of \(\mathcal{S} \sim \mathcal{D}^N \), for any \(r \),

\[
\left| \frac{1}{N} \sum_{x \in \mathcal{S}} f_r(x) - \mathbb{E}_{x \sim \mathcal{D}} [f_r(x)] \right| = \tilde{O} \left(\frac{1}{N} \sum_{x \in \mathcal{S}} \| f^*_x - g^*_x \|_{\infty} + \hat{\mathcal{R}}_S (\mathcal{G}) + \sqrt{\frac{1}{N}} \right)
\]

If \(\mathcal{G} \) not too complex and \(\mathcal{G}^* (\gamma, \infty) \)-approximates \(\mathcal{F}^* \),

\textbf{Bound approaches} \(O(\gamma) \) as \(N \to \infty \).
Main result: Lower bound
Lower bound

For any γ and $p < \infty$, there exist function classes \mathcal{F}, \mathcal{G} such that:

- Dual class \mathcal{G}^* (γ, p)-approximates \mathcal{F}^*
- \mathcal{G} is **very simple** Rademacher complexity is 0
- \mathcal{F} is **very complex** Rademacher complexity is $\frac{1}{2}$
 - **Not possible** to provide generalization bounds in worst case
Experiments
Experiments: Integer programming

Tune integer programming solver parameters
Also studied by Balcan, Dick, Sandholm, Vitercik [ICML’18]

Distributions over auction IPs
[Leyton-Brown, Pearson, Shoham, EC’00]
Conclusion
Conclusion

• Provided generalization bounds for algorithm configuration

• Apply whenever utility as function of parameters is "approximately simple"

• Connection between learnability and approximability is balanced on a knife-edge
 • If approximation holds under L^∞-norm, can provide strong bounds
 • If holds under L^p-norm for $p < \infty$, not possible to provide bounds

• Experiments demonstrate strength of these bounds