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Given a variety of algorithms, which to use?

(O Algorithm design

Can machine learning guide algorithm discovery?
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Algorithm contiguration

Example: Integer programming solvers
Most popular tool for solving combinatorial (& nonconvex) problems

Routing Manufacturing Scheduling Planning Finance



Algorithm contiguration

IP solvers (CPLEX, Gurobi) have a ton parameters
« CPLEX has 170-page manual describing 172 parameters
* Tuning by hand is notoriously slow, tedious, and error-prone

CPX_PARAM_NODEFILEIND 100
CPX_PARAM_NODELIM 101
CPX_PARAM_NODESEL 102

CPX_PARAM_TRELIM 160
CPX_PARAM_TUNINGDETTILIM 160
CPX_PARAM_TUNINGDISPLAY 162

CPX_PARAM_NUMERICALEMPHASIS 102CPX_PARAM_TUNINGMEASURE 163

CPX_PARAM_NZREADLIM 103
CPX_PARAM_OBJDIF 104
CPX_PARAM_OBJLLIM 105
CPX_PARAM_OBJULIM 105
CPX_PARAM_PARALLELMODE 108
CPX_PARAM_PERIND 110
CPX_PARAM_PERLIM 111

CPX_PARAM_TUNINGREPEAT 164
CPX_PARAM_TUNINGTILIM 165
CPX_PARAM_VARSEL 166
CPX_PARAM_WORKDIR 167
CPX_PARAM_WORKMEM 168
CPX_PARAM_WRITELEVEL 169
CPX_PARAM_ZEROHALFCUTS 170

CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30
CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut
CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut
CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46

CPX_PARAM_POLISHAFTERNODE 115
CPX_PARAM_POLISHAFTERTIME 116
CPX_PARAM_POLISHTIME
(deprecated) 116
CPX_PARAM_POPULATELIM 117
CPX_PARAM_PPRIIND 118
CPX_PARAM_PREDUAL 119
CPX_PARAM_PREIND 120
CPX_PARAM_PRELINEAR 120
CPX_PARAM_PREPASS 121
CPX_PARAM_PRESLVND 122
CPX_PARAM_PRICELIM 123
CPX_PARAM_PROBE 123
CPX_PARAM_PROBEDETTIME 124
CPX_PARAM_PROBETIME 124
CPX_PARAM_QPMAKEPSDIND 125
CPX_PARAM_QPMETHOD 138
CPX_PARAM_QPNZREADLIM 126

CPXPARAM_CPUmask 48
CPXPARAM_DistMIP_Rampup_Duration 128
CPXPARAM_LPMethod 136
CPXPARAM_MIP_Cuts_BQP 38
CPXPARAM_MIP_Cuts_Locallmplied 77
CPXPARAM_MIP_Cuts_RLT 136
CPXPARAM_MIP_Cuts_ZeroHalfCut 170
CPXPARAM_MIP_Limits_CutsFactor 52
CPXPARAM_MIP_Limits_RampupDetTimeLimit

CPXPARAM_MIP_Limits_RampupTimeLimit 128

CPXPARAM_MIP_Limits_Solutions 79
CPXPARAM_MIP_Limits_StrongCand 154
CPXPARAM_MIP_Limits_Stronglt 154
CPXPARAM_MIP_Limits_TreeMemory 160
CPXPARAM_MIP_OrderType 91
CPXPARAM_MIP_Pool_AbsGap 146
CPXPARAM_MIP_Pool_Capacity 147
CPXPARAM_MIP_Pool_Intensity 149

CPX_PARAM_RANDOMSEED 130
CPX_PARAM_REDUCE 131
CPX_PARAM_REINV 131
CPX_PARAM_RELAXPREIND 132
CPX_PARAM_RELOBJDIF 133
CPX_PARAM_REPAIRTRIES 133
CPX_PARAM_REPEATPRESOLVE 134
CPX_PARAM_RINSHEUR 135
CPX_PARAM_RLT 136
CPX_PARAM_ROWREADLIM 141
CPX_PARAM_SCAIND 142
CPX_PARAM_SCRIND 143
CPX_PARAM_SIFTALG 143
CPX_PARAM_SIFTDISPLAY 144
CPX_PARAM_SIFTITLIM 145
CPX_PARAM_SIMDISPLAY 145
CPX_PARAM_SINGLIM 146
CPX_PARAM_SOLNPOOLAGAP 146

CPX_PARAM_SOLNPOOLCAPACITY 147

CPX_PARAM_SOLNPOOLGAP 148

CPXPARAM_MIP_Pool_RelGap 148
CPXPARAM_MIP_Pool_Replace 151
CPXPARAM_MIP_Strategy_Branch 39
CPXPARAM_MIP_Strategy_MIQCPStrat 93

CPX_PARAM_FLOWCOVERS 70
CPX_PARAM_FLOWPATHS 71
CPX_PARAM_FPHEUR 72
CPX_PARAM_FRACCAND 73

CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73

CPXPARAM_MIP_Strategy_VariableSelect 166
CPXPARAM_MIP_SubMIP_NodeLimit 155
CPXPARAM_OptimalityTarget 106
CPXPARAM_Output_WriteLevel 169
CPXPARAM_Preprocessing_Aggregator 19
CPXPARAM_Preprocessing_Fill 19
CPXPARAM_Preprocessing_Linear 120
CPXPARAM_Preprocessing_Reduce 131
CPXPARAM_Preprocessing_Symmetry 156
CPXPARAM_Read_DataCheck 54
CPXPARAM_Read_Scale 142
CPXPARAM._ScreenOutput 143
CPXPARAM_Sifting_Algorithm 143
CPXPARAM _Sifting_Display 144
CPXPARAM_Sifting_Iterations 145

CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145

CPX_PARAM_SOLNPOOLREPLACE 151

CPX_PARAM_SOLUTIONTARGET
deprecated: see
CPXPARAM_OptimalityTarget 106
CPX_PARAM_SOLUTIONTYPE 152
CPX_PARAM_STARTALG 139
CPX_PARAM_STRONGCANDLIM 154
CPX_PARAM_STRONGITLIM 154
CPX_PARAM_SUBALG 99
CPX_PARAM_SUBMIPNODELIMIT 155
CPX_PARAM_SYMMETRY 156
CPX_PARAM_THREADS 157
CPX_PARAM_TILIM 159

CPXPARAM_Simplex_Limits_Singularity 146
CPXPARAM._ SolutionType 152
CPXPARAM_Threads 157
CPXPARAM_TimeLimit 159
CPXPARAM_Tune_DetTimeLimit 160
CPXPARAM_Tune_Display 162
CPXPARAM_Tune_Measure 163
CPXPARAM_Tune_Repeat 164
CPXPARAM_Tune_TimeLimit 165
CPXPARAM_WorkDir 167
CPXPARAM_WorkMem 168
Cralnd 50

CPX_PARAM_FRACPASS 74
CPX_PARAM_GUBCOVERS 75
CPX_PARAM_HEURFREQ 76
CPX_PARAM_IMPLBD 76
CPX_PARAM_INTSOLFILEPREFIX 78
CPX_PARAM_INTSOLLIM 79
CPX_PARAM_ITLIM 80
CPX_PARAM_LANDPCUTS 82
CPX_PARAM_LBHEUR 81
CPX_PARAM_LPMETHOD 136
CPX_PARAM_MCEFCUTS 82

CPX_PARAM_BRDIR 39
CPX_PARAM_BTTOL 40
CPX_PARAM_CALCQCPDUALS 41
CPX_PARAM_CLIQUES 42
CPX_PARAM_CLOCKTYPE 43
CPX_PARAM_CLONELOG 43
CPX_PARAM_COEREDIND 44
CPX_PARAM_COLREADLIM 45
CPX_PARAM_CONFLICTDISPLAY 46
CPX_PARAM_COVERS 47
CPX_PARAM_CPUMASK 48
CPX_PARAM_CRAIND 50
CPX_PARAM_CUTLO 51
CPX_PARAM_CUTPASS 52
CPX_PARAM_CUTSFACTOR 52
CPX_PARAM_CUTUP 53

CPX_PARAM_MEMORYEMPHASIS 83 CPX_PARAM_DATACHECK 54

CPX_PARAM_MIPCBREDLP 84
CPX_PARAM_MIPDISPLAY 85
CPX_PARAM_MIPEMPHASIS 87
CPX_PARAM_MIPINTERVAL 88
CPX_PARAM_MIPKAPPASTATS 89
CPX_PARAM_MIPORDIND 90
CPX_PARAM_MIPORDTYPE 91
CPX_PARAM_MIPSEARCH 92
CPX_PARAM_MIQCPSTRAT 93
CPX_PARAM_MIRCUTS 94
CPX_PARAM_MPSLONGNUM 94
CPX_PARAM_NETDISPLAY 95
CPX_PARAM_NETEPOPT 96
CPX_PARAM_NETEPRHS 96
CPX_PARAM_NETFIND 97
CPX_PARAM_NETITLIM 98
CPX_PARAM_NETPPRIIND 98

CPX_PARAM_DEPIND 55
CPX_PARAM_DETTILIM 56
CPX_PARAM_DISJCUTS 57
CPX_PARAM_DIVETYPE 58
CPX_PARAM_DPRIIND 59
CPX_PARAM_EACHCUTLIM 60
CPX_PARAM_EPAGAP 61
CPX_PARAM_EPGAP 61
CPX_PARAM_EPINT 62
CPX_PARAM_EPMRK 64
CPX_PARAM_EPOPT 65
CPX_PARAM_EPPER 65
CPX_PARAM_EPRELAX 66
CPX_PARAM_EPRHS 67
CPX_PARAM_FEASOPTMODE 68
CPX_PARAM_FILEENCODING 69



Algorithm contiguration

IP solvers (CPLEX, Gurobi) have a ton parameters
« CPLEX has 170-page manual describing 172 parameters
* Tuning by hand is notoriously slow, tedious, and error-prone

What's the best configuration for the application at hand?

Best configuration for routing problems |
ikely not suited for scheduling
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Can machine learning guide algorithm discovery?



Algorithm selection in theory

Worst-case analysis has been the main framework for decades
Has led to beautiful, practical algorithms

Worst-case instances rarely occur in practice

In practice:
Instances solved in past are similar to future instances...

oy &b oo &b



In practice, we have‘ ata
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In practice, we have data about
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In practice, we have data about
the application domain
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Existing research

Constraint satisfaction
[Horvitz, Ruan, Gomes, Krautz, Selman, Chickering, UAI'01; ...]

Integer programming

[Hutter, Hoos, Leyton-Brown, CPAIOR "10; ...] Applied

research
Economics (mechanism design)
[Likhodedov, Sandholm, AAAI ‘04, '05; ...]

Computational biology
[Majoros, Salzberg, Bioinformatics'04; ...]

2000 2023



Existing research

/Automated algorithm configuration and selection Applied
[Gupta, Roughgarden, ITCS16; Balcan, Nagarajan, Vitercik, White, COLT17; ...] research

Learning-augmented algorithms
[Lykouris, Vassilvitskii, ICML'18; Mitzenmacher, NeurlPS'18; ...]

Sample complexity of revenue maximization

[Balcan, Blum, Hartline, Mansour, FOCS'05; Elkind, SODA07; ...] Theory
research

2000 2023



ML + algorithm design: Potential impact

Example: integer programming
* Used heavily throughout industry and science
« Many different ways to incorporate learning into solving
* Solving is very difficult, so ML can make a huge difference




Example: Spectrum auctions

*In"16-"17, FCC held a $19.8 billion radio spectrum auction

* Involves solving huge graph-coloring problems
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« SATFC usesalgorithrﬁ configuration + selection
* Simulations indicate SATFC saved the government billions

Leyton-Brown et al., PNAS'17; Leyton-Brown and Hutter, ICML'19 tutorial



Plan for tutorial

@ Theoretical guarantees
a. Statistical guarantees for algorithm configuration
b. Online algorithm configuration

© Applied techniques

a. Graph neural networks



Plan for tutorial

© Theoretical guarantees
a. Statistical guarantees for algorithm configuration
b. Online algorithm configuration

© Applied techniques

a. Graph neural networks

Gupta, Roughgarden, ITCS'16

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21
Balcan, Prasad, Sandholm, Vitercik, NeurlPS'21

Balcan, Prasad, Sandholm, Vitercik, NeurlPS'22



Running example: Sequence alignment

Goal: Line up pairs of strings

Applications: Biology, natural language processing, etc.

(vitterchik

Did you mean: vitercik



Sequence alignment algorithms

Input: Two sequences S and S’ Output: Alignment of S and §’

G

Mismatch




Sequence alignment algorithms

Standard algorithm with parameters p;, p3, p3 = 0:
Return alignment maximizing:

(# matches) — p; - (# mismatches) — p, - (# indels) — p3 - (# gaps)

Gap
S
S=ACTAQG A--CTGQG
S=GTCA - GT CA -
t t
Insertion/deletion (indel) I Mismatch

Match



Sequence alignment algorithms

Can sometimes access ground-truth, reference alignment

E.g., in computational biology: Bahr et al., Nucleic Acids Res.01; Raghava et al., BMC
Bioinformatics ‘03; Edgar, Nucleic Acids Res.'04; Walle et al., Bioinformatics'04

Requires extensive manual alignments
...rather just run parameterized algorithm

How to tune algorithm'’s parameters? 4 *
“There is considerable disagreement A--CTQG
among molecular biologists about the - GTCA -
correct choice” [Gusfield et al. '94] \ y




Sequence alignment algorithms

-~-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EETECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences



Sequence alignment algorithms

KPDDLPFSTVVP-LKTFYEPG VSRGGM INTLKC
FPSRPDNGFVNYPAKPTLYY SLDGP- AMPSC-

Ground-truth alignment of protein sequences

---KPDDLPFSTVVPLKTFYEPG SRGGM INTLKC
FPSRPDN-GFVNYPAKPTLYYK- -SLDGP -AMPSC

Alignment by algorithm with poorly-tuned parameters

-G
E-

G
E




Sequence alignment algorithms

-G VP- VSRGGM NTLKC
E- NYP SLDGP- MPSC-

Ground-truth alignment of protein sequences

---KPDDLPFSTVVPLKTFYEPG SRGCGM INTLKC
FPSRPDN-GFVNYPAKPTLYYK- -SLDGP -AMPSC

Alignment by algorithm with poorly-tuned parameters

G -VP VSRGGM NTLKC
E NYP -SLDGP -MPSC

Alignment by algorithm with well-tuned parameters

G
E




Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set T of “typical” inputs

Sequence §; Sequence S,
Sequence S; Sequence S,

Reference alignment 4, Reference alignment 4,

3. Find parameter setting w/ good avg performance over T

Runtime, solution quality, etc.



Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set T of “typical” inputs

Sequence §; Sequence S,
Sequence S; Sequence S,

Reference alignment 4, Reference alignment 4,

3. Find parameter setting w/ good avg performance over T

On average, output alignment is close to reference alignment



Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set T of “typical” inputs

Sequence $; Sequence S,
Sequence S Sequence S,

Reference alignment 4, Reference alignment 4,

3. Find parameter setting w/ good avg performance over T

Key question:
How to find parameter setting with good avg performance?



Automated parameter tuning procedure

Key question:
How to find parameter setting with good avg performance?

E
\.:. E.g., for sequence alignment:
algorithm by Gusfield et al. ['94]

Many other generic search strategies
E.g., Hutter et al. [JAIR'0?, LION'11], Ansétegui et al. [CP'09], ...

Pl

\



Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set T of “typical” inputs

Sequence $; Sequence S,
Sequence S Sequence S,

Reference alignment 4, Reference alignment 4,

3. Find parameter setting w/ good avg performance over T

Key question (focus of this section):
Will that parameter setting have good future performance?



Automated parameter tuning procedure

Seen Unseen
e 2

Sequence S,

Sequence S;

Sequence §

Sequence S’
Unknown alignment 4

Sequence S,
Reference alignment 4,

Sequence S;
Reference alignment 4,

\_ AN J

Key question (focus of this section):
Will that parameter setting have good future performance?



Generalization

Key question (focus of this section):

Good performance on average over training set implies good
future performance?

] Igorith : : . : :
Gre(zdgp?a,ggc';l:g?gsarden, TCS'16 ‘ First to ask question for algorithm configuration ]

Search
. Sakaue, Oki, NeurlPS'22
Clustering
Balcan, Nagarajan, V, White, COLT'17

Garg, Kalai, NeurlPS'18 Numerical linear algebra
Balcan, Dick, White, NeurlPS'18 Bartlett et al., COLT'22
Balcan, Dick, Lang, ICLR'20

And many other areas...



This section: Main result

Key question (focus of this section):

Good performance on average over training set implies good
future performance?

Answer this question for any parameterized algorithm where:

Performance is piecewise-structured function of parameters

Piecewise constant, linear, quadratic, ...

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



This section: Main result

Performance is piecewise-structured function of parameters

Piecewise constant, linear, quadratic, ...
Algorithmic
performance
on fixed input

Piecewise constant Piecewise linear Piecewise ...

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Example: Sequence alignment

Distance between algorithm’s output given §, S’
and ground-truth alignment is p-wise constant

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Piecewise structure

Piecewise structure unifies seemingly disparate problems:

: Integer programming Computational biology
Balcan, Dick, Sandholm, V, ICML'18 Balcan, DeBlasio, Dick, Kingsford,
: Balcan, Prasad, Sandholm, V, NeurlPS'21 Sandholm, V, STOC'21
Balcan, Prasad, Sandholm, V, NeurlPS'22

)| Greedy algorithms
Clustering | Gupta, Roughgarden, ITCS'16
Balcan, Nagarajan, V, White, COLT'17

Balcan, Dick, White, NeurlPS'18 .\ Mechanism configuration |
Balcan, Dick, Lang, ICLR'20 o] Balcan, Sandholm, V, EC'18

Ties to a long line of research on machine learning for revenue maximization
Likhodedov, Sandholm, AAAI'O4, '05: Balcan, Blum, Hartline, Mansour, FOCS'05: Elkind, SODA'07;

Cole, Roughgarden, STOC'14; Mohri, Medina, ICML'14; Devanur, Huang, Psomas, STOC'16; ...

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Primary challenge

Algorithmic performance is a volatile function of parameters
Complex connection between parameters and performance

Solver search 2500 -

tree size

3000 L

2000

1k

L —

0.00 0.05

0.10

0.15 0.20

Integer programming solver parameter

Balcan, Prasad, Sandholm, Vitercik, NeurlPS'21



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Applications

2. Online algorithm configuration



Model

R%: Set of all parameters
X: Set of all inputs



Example: Sequence alignment

R3: Set of alignment algorithm parameters
X: Set of sequence pairs

(" )
S
S

O >
— M
N —
> O

!

\ J

One sequence pairx = (5,5') € X



Algorithmic performance

u,(x) = utility of algorithm parameterized by p € R? on input x
E.g., runtime, solution quality, distance to ground truth, ...

Assume u,(x) € [—1,1]
Can be generalized to u,(x) € [-H,H]



Model

Standard assumption: Unknown distribution D over inputs
Distribution models specific application domain at hand

E.g., distribution over pairs of DNA strands

E.g., distribution over pairs of protein sequences




Generalization bounds

Key question: For any parameter setting p,
is average utility on training set close to expected utility?

Formally: Given samples x4, ..., x5 ~D, for any p,

N
1
Nz Uy () — Explu, 0)]| < ?
=1
Empirical average utility Expected utility

Good average empirical utility mp Good expected utility



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model

ii. Piecewise-structured algorithmic performance

a. Example: Sequence alignment
b. Dual function definition

iii. Main result
iv. Applications

2. Online algorithm configuration



Sequence alignment algorithms

Lemma:

For any pair S,S’, there's a partition of R3 s.t. in any region,
algorithm'’s output is fixed across all parameters in region

TG A--CTGQG
CA -GCTCA -

.

A C
GT

P2

Gusfield et al., Algorithmica '94; Fernandez-Baca et al., J. of Discrete Alg. ‘04



Sequence alignment algorithms

. Defined by (max{|S|, |S’|})® hyperplanes
emma:

For any pair S,S’, there's a partition of R3 s.t. in any region,
algorithm'’s output is fixed across all parameters in region

CTG A--CTGQG
T CA -GCTCA -

S
[

A
G

o>
— |
NN
> —
I O

P2

Gusfield et al., Algorithmica '94; Fernandez-Baca et al., J. of Discrete Alg. ‘04



Piecewise-constant utility function

Corollary:

Utility is piecewise constant function of parameters

Distance between algorithm’s output and ground-truth alignment

Uis,sh (p)

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model

ii. Piecewise-structured algorithmic performance

a. Example: Sequence alignment
b. Dual function definition

iii. Main result
iv. Applications

2. Online algorithm configuration



Primal & dual classes

u,(x) = utility of algorithm parameterized by p € R? on input x
U = {up:X - R|peR?* “Primal” function class

Typically, prove guarantees by bounding complexity of U

Challenge: U is gnarly

E.g., in sequence alignment:
« Each domain element is a pair of sequences
* Unclear how to plot or visualize functions u,,
* No obvious notions of Lipschitz continuity or smoothness to rely on

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Primal & dual classes

u,(x) = utility of algorithm parameterized by p € R? on input x
U = {up:X - R|peR?* “Primal” function class

uy(p) = utility as function of parameters
uy(p) = uy(x)
U ={u:R* > R ‘ x € X} "Dual” function class

* Dual functions have simple, Euclidean domain
« Often have ample structure can use to bound complexity of U

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Piecewise-structured functions

Dual functions u;: R% - R are piecewise-structured

e

Clustering Integer Selling Greedy Computational Voting
algorithm  programming mechanism algorithm biology mechanism
configuration algorithm configuration configuration algorithm configuration
configuration configuration

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
lii. Main result
iv. Applications

2. Online algorithm configuration



Intrinsic complexity

“Intrinsic complexity” of function class G
* Measures how well functions in G fit complex patterns
 Specific ways to quantify “intrinsic complexity”:
« VC dimension
* Pseudo-dimension

More complex Less complex




VC dimension

Complexity measure for binary-valued function classes F
(Classes of functions f: Y — {—1,1})

E.g., linear separators




VC dimension

Size of the largestset S € Y
that can be labeled in all 21°l ways by functions in F

Example: F = Linear separators in R? VCdim(F) = 3




VC dimension

Size of the largestset S € Y
that can be labeled in all 21°l ways by functions in F

Example: F = Linear separators in R* VCdim(F) = 3
= [ =AR=1[+][+AR+ |[F [ =
+ + -/k— = =] [t~ || [+ +] |= =
+ - +
VCdim(F) < 3 + + + -

VCdim({Linear separators in R4}) = d + 1



VC dimension

Size of the largestset S € Y
that can be labeled in all 21°l ways by functions in F

Mathematically, for § = {y;, ..., yn},

f(f()’ﬂ)
< E f €F
N\ (yn)




Pseudo-dimension

Complexity measure for real-valued function classes G
(Classes of functions g: Y - [—1,1])

E.g., affine functions




Pseudo-dimension of §

Size of the largest set {y,, ..., yn} € Y s.t.:

Example: § = Affine functions in R

ZZ-

Zl-_

for some targets z;, ..., zy € R,

all 2V above/below patterns achieved by functions in G

Vi

yo
Can also show that Pdim(G) < 2

Vi

| o
—
)

Pdim(G) = 2




Pseudo-dimension of §

Size of the largest set {y,, ..., yn} € Y s.t.:
for some targets z;, ..., zy € R,
all 2V above/below patterns achieved by functions in G

Mathematically,

Lig(y)2z1) )

1
N
2

g€
N\ Lgomzzal )




Sample complexity using pseudo-dim

In the context of algorithm configuration:
* U = {u,: p € R?} measure algorithm performance

*Fore, 6 € (0,1),letN=0 (Pdim(w log%)

€2

 With probability at least 1 — § over x4, ..., xy ~ D,Vp € R,

&
Nz Uy () = Exoplu,(@)]| <€

Empirical average utility Expected utility



Main result (informal)

Boundary functions fi, ..., f, € F partition R% s.t. in each region,
uy(p) = g(p) tor some g € G.

Training set of size 0 (Pdim(g HVEgim(? ) log k) implies

WHP Vp, |avg utility over training set - exp utility| < €
ux(p)
| \:DZ\/ UAS g

5 \>\/f67-"
— P1

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Main result (informal)

Boundary functions fi, ..., f, € F partition R% s.t. in each region,
uy(p) = g(p) tor some g € G.

Theorem:
Pdim(U) = 5((VCdim(T*) + Pdim(G™)) logk)
I

[ Primal function class U = {upl pPE Rd} ]

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Key lemma

Each boundary function f: R% - {—1,1} splits R% into 2 regions

P2 f1(p)

filp) =1

> P1

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Key lemma

Given D boundaries, how many sign patterns do they make?

<2

f

A

\

P2
A

(

f1 (P)
f>(P)

Jooen

fi(p)
/ fz(p)
— f2(p)
> P1

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Key lemma

Given D boundaries, how many sign patterns do they make?

f

A

\

f1(p)
( : ):p € ]Rd}
fo(p)

<2

Note: Sauer’s lemma tells us that for any D points py, ..., pp € R?

f(po)

):fe:i—"

\

J

< (eD)VCdim(T)

This is where transitioning to the dual comes in handy!

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Key lemma

Given D boundaries, how many sign patterns do they make?

f

A

\

f1(p)
( : ):p € ]Rd}
fo(p)

< (eD)VCdim(T*)

Note: Sauer’s lemma tells us that for any D points py, ..., pp € R?

f(po)

):fe:i—"

\

J

< (eD)VCdim(T)

This is where transitioning to the dual comes in handy!

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Proof ideas

For any problem instances x4, ..., x5 and targets zy, ..., Zy € R,

Switching to t

( Sgn(up(xl) o Zl)
X .

\ sgn(up(xN) — ZN)

ne dual functions,

\

([ sgn(uz,(p) — 2)

\sgn(us, () - Zy)

. p € R?

N
. p € R?

\

’

/

>

J

<2

<2

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Proof ideas

([ sgn(u;, (p) — 21) )
< ( : ):p € R ?

\sgn(uz, (p) — zy) J

INA

\ \ U, (P)

> p

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Proof ideas

([ sgn(uz,(p) — 2,) \
: . p € R?
\sgn(uxy (p) — zy) )
The duals uy_, ..., uy, correspond to Nk boundary functions in F
How many regions Ry, ..., Ry in R4? M < (eNk)VCdim(F")

< ?

A
Y

ux(p)
! \/ g € g

~,

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Proof ideas

([ sgn(u;, (p) — z;) )
: :p ER;

J O

\sgn(uz, (p) — zy) J

A
)

A

Vp € R;, duals are simultaneously structured: uy, (p) = g;(p), Vi

ux(p)
! \/ g € g

~,

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Proof ideas

AN

([ sgn(u;, (p) — 21) )

(\sen(usz, () — 20)

Y

J

< ?

Vp € R;, duals are simultaneously structured: uy, (p) = g;(p), Vi

f

4

\

(

sgn(g, (P) — Z1)

sgn(gn (p) — zv)

oo

<2

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Proof ideas

A

([ sgn(u;, (p) — 21) )

(\sen(usz, () — 20)

< ?

Y

J

Vp € R;, duals are simultaneously structured: uy, (p) = g;(p), Vi

f

4

\

(

sgn(g, (P) — Z1)

sgn(gn (p) — zv)

oo

Balcan, DeBlasio,

< (eN)Pdim(g*)

Follows from key lemma

Dick, Kingsford, Sandholm, Vitercik, STOC'21



Proof ideas

([ sgn(uy, (p) — z,) )

: . p € R?
\sgn(u;, (p) — zy) )
< (eNk)VCdim(:F*) (eN)Pdim(g*)

A
Y

Number of regions Number of sign patterns within each region

Pdim(U) equals largest N s.t. 2N < (eNk)VCdimEF") (gN)Pdim(G™),
so Pdim(U) = 5((VCdim(7—"*) + Pdim(G™)) logk)

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result

iv. Applications

a. Sequence alignment
b. Greedy algorithms
c. Cutting planes

2. Online algorithm configuration



Piecewise constant dual functions

Lemma:
Utility is piecewise constant function of parameters

uzg,g’)(p)

P1

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Sequence alignment guarantees

Theorem: Training set of size
5 (Pdim(g*) + VCdim(F*) log k) _5 (log(max seq. length))

2 2
implies WHP Vp, |avg utility over training set - exp utility| < €

uzgrg’)(p) ‘

P1

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Sequence alignment guarantees

Theorem: Training set of size

~ (Pdim(G™) + VCdim(F~*) logk - (log(max seq. length)
0 € =0 ( € )
G = constant (F = hyperplanes in R3 [(max sequence length)? ]
functions in R3 VCdim(F*) = 0(1)
Pdim(G*) = 0(1) | ~
implies WHP Vp, |avg utility over training set - exp utility| < €

P1

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result

iv. Applications

a. Seqguence alignment
b. Greedy algorithms

c. Cutting planes
2. Online algorithm configuration



Example: MWIS

Maximum weight independent set (M\WIS)

Problem instance:
* Graph G = (V,E)
* n vertices with weights wy, ...,w, = 0

Goal: find subset § € [n]
* Maximizing >};eq W;
 No nodesi,j € S are connected: (i,j) € E



Example: MWIS

Greedy heuristic:

Greedily add vertices v in decreasing order of —~

(1+deg(v))

Maintaining independence

Parameterized heuristic [Gupta, Roughgarden, ITCS"16]s

: : : Wy
Greedily add nodes in decreasing order of rdeem)? P >0

[Inspired by knapsack heuristic by Lehmann et al., JACM'02]

Gupta, Roughgarden, ITCS'16



Example: MWIS

Given a MWIS instance x, uy(p) = weight of IS algorithm returns

Theorem [Gupta, Roughgarden, ITCS'16]:
us(p) is piecewise-constant with at most n? pieces

Gupta, Roughgarden, ITCS'16



Example: MWIS

Given a MWIS instance x, uy(p) = weight of IS algorithm returns
« Weights wy, ...,w,, = 0
e deg(i) + 1 = k;

Algorithm parameterized by p would add node 1 before 2 if:

Wy S Wy > W7
kP T kP = P =108k
1 2 kg 71
Heuristic prioritizes node 2 . Heuristic prioritizes node 1
! " P
logy, —
0F . —2
gl;_i Wy

Gupta, Roughgarden, ITCS'16



Example: MWIS

. (g) thresholds per instance

* Partition R into regions where algorithm’s output is fixed

Algorithm will add exact same
nodes no matter which p it uses

N
_ l l V. A ‘
¢ | | | [ > p
logy. 23 logr b logy. 22 logy. 23
O08k; —— 08k; — 08k, — O08k3 —
' W1 ki Wi ' W1 K, W2

Gupta, Roughgarden, ITCS'16



Example: MWIS

. (g) thresholds per instance

* Partition R into regions where algorithm’s output is fixed
= U, (p) 1s constant

ux(p)

N

logk, =3 logk, — logk, —2 logk, =3
kL W1 ki Wi kL W1 k, W2

Gupta, Roughgarden, ITCS'16



MWIS guarantees

Theorem: Training set of size
- (Pdim(G*) + VCdim(F*) logk - (logn
5 2 o (')
€ €
avg utility over training set - exp utility| < €

implies WHP Vvp,

Gupta, Roughgarden, ITCS16; Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



MWIS guarantees

Theorem: Training set of size
5 (Pdim(g“*) + VCdim(F*) log k) _5 (log n)

€2 €2

[g = constant functions J [.‘F = thresholds J ‘ n? \

Pdim(G*) = 0(1) VCdim(F*) = 0(1)

implies WHP Vvp,

avg utility over training set - exp utility| < €

Gupta, Roughgarden, ITCS16; Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result

iv. Applications

a. Seqguence alignment
b. Greedy algorithms
c. Cutting planes

2. Online algorithm configuration



7
L z € {0,1}

‘max  (40,60,10,10,3,20,60) - z
s.t.  (40,50,30,10,10,40,30) - z < 100

~

J

Z6:0

(0, 1,0,1,0,7, 1)

135

Z6:1

Z1:0

Z2:0

z= (%,1,0,0,0,0,1)

140

Z1:1

(1.2,0,0,0,0,1)

136

Z2:1

(0.1,3,1,0,0,1)

(0.2,0,0,0,1,1)

(1,0,0,1,0,5,1)

(1, 1,0,0,0,0, g)

133.3

PSS S
ZS:O \fl

4
0,1,0,1,1,0,0) | [ (0.3,1,0,0,0,1)
133 118
IS PSS SSSSS

120
AAASASASASAS S

120
PSS

Prune node if:
won't find better solution along branch

Branch
and

bound
(B&B)



Cutting planes

Additional constraints that:

 Separate the LP optimal solution
 Tightens LP relaxation to prune nodes sooner

* Don't separate any integer point

LP optimal solution

Invalid



Cutting planes

Modern IP solvers add cutting planes through the B&B tree
“Branch-and-cut”

Responsible for breakthrough speedups of IP solvers
Cornuéjols, Annals of OR ‘07

Challenges:

* Many different types of cutting planes
« Chvatal-Gomory cuts, cover cuts, clique cuts, ...

* How to choose which cuts to apply?



Chvatal-Gomory cuts
We study the canonical family of Chvatal-Gomory (CG) cuts
CG cut parameterized by p € [0,1)™ is |pTAlz < |p" b

Important properties:
* CG cuts are valid
* Can be chosen so it separates the LP opt

Balcan, Prasad, Sandholm, Vitercik, NeurlPS'21



Key challenge

Cut (typically) remains in LPs throughout entire tree search

Every aspect of tree search depends on LP guidance
Node selection, variable selection, pruning, ...

Tiny change in cut can cause major changes to tree

Balcan, Prasad, Sandholm, Vitercik, NeurlPS'21



Key lemma

Lemma: 0(||A||1,1 + ||b]|; + n) hyperplanes partition [0,1)™ into regions
s.t. in any one region, B&C tree is fixed

Tree size is a piecewise-constant function of p € [0,1)™

Tree size

Balcan, Sandholm, Prasad, Vitercik, NeurlPS'21



Key lemma

Lemma: 0(||A||1,1 + ||b]|; + n) hyperplanes partition [0,1)™ into regions
s.t. in any one region, B&C tree is fixed

Proof idea:
* CG cut parameterized by p € [0,1)™ is |pTAlz < |p" b]
* For any p and column a;, lp alJ € [_”a’lllll ”al”
* For each integer k; € [—||a;||1, lla;|l4]
P a) =k ik, < pTay <y +1 —| 0t
* In any region defined by mtersectlon of halfspaces:
(lpTay], ..., |p"a,,]) is constant

Balcan, Sandholm, Prasad, Vitercik, NeurlPS'21



Beyond Chvatal-Gomory cuts

For more complex families, boundaries can be more complex

pl2]

Balcan, Sandholm, Prasad, Vitercik, NeurlPS'22



Cutting plane guarantees

Theorem: Training set of size
5 (Pdim(g*) + VCdim(F*) log k) _5 (mlog(IIAlll’l + ||b||; + n))

€2 €
implies WHP Vp, |avg utility over training set - exp utility| < €

Balcan, Prasad, Sandholm, Vitercik, NeurlPS'21; Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Cutting plane guarantees

Theorem: Training set of size
5 (Pdim(g“*) + VCdim(F*) log k) _5 (mlog(IIAlll,l + ||b||; + n))

€2 €2

Al s + 1Bl + 7 |

[T = hyperplanes in IRmJ

VCdim(F*) = 0(m)

G = constant functions in R™
Pdim(G*) = O(m)

implies WHP Vp,

avg utility over training set - exp utility| < €

Balcan, Prasad, Sandholm, Vitercik, NeurlPS'21; Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration

Gupta, Roughgarden, ITCS'16
Balcan, Dick, Vitercik, FOCS'18
Balcan, Dick, Pegden, UAI'20



Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?
E.g., MWIS:

Day 1: p; Day 2: p, Day 3: p3

Goal: Compete with best parameter setting in hindsight
* Impossible in the worst case
« Under what conditions is online configuration possible?




Online model

Over T timestepst =1, ..., T:
_earner chooses parameter setting p;
Nature (or adversary &) chooses problem instance x,

_earner obtains reward u, (x;) = uy, (p¢)

_earner observes function u; (full information feedback)

« Simplest setting so we'll start here
« Will look at other feedback models later (e.g., bandit)

B =



Online model

Over T timestepst =1, ..., T:

_earner chooses parameter setting p;

Nature (or adversary &) chooses problem instance x,
_earner obtains reward u, (x;) = uy, (p¢)

_earner observes function u; (full information feedback)

B =

Goal: Minimize regret max Yiim1Up(xe) — Nfmq Uy, (xp)

Ideally, % - (Regret) > 0asT — o
On average, competing with best algorithm in hindsight



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration

2. Online algorithm configuration
i. Worst-case instance
il.  Dispersion
iii. Semi-bandit model



Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1:
14 O
1%, (p) Dual function: Utility on instance x; as function of p
ﬁ—»p
w, (o) Dual function: Utility on instance x; as function of p

Gupta and Roughgarden, ITCS'16



Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1:

s (p) Adversary chooses x; or x; with equal probability

+>p

u;; (p) |
p

Gupta and Roughgarden, ITCS'16



Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1: Round 2:
14 O $ Ommm—

uy, (p) Uy, (p)

( )

ur (p) u,r (p)
\ P

Gupta and Roughgarden, ITCS'16



Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1: Round 2: | |

T Sr— C om Repeatedly halves optimal region
Uy, (p) Uz, (p)

\_ —— p ——> )

ur (p) | u,r (p) |
p p

Gupta and Roughgarden, ITCS'16




Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1: Round 2: | |

T Sr— C om Repeatedly halves optimal region
Uy, (p) Uz, (p)

\_ —— p ——> )

ur (p) | u,r (p) |
p p

Gupta and Roughgarden, ITCS'16



Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:

Every full information online algorithm has linear regret
Round 2:

Round 1:

a 13 O— N
Uy, (p)

\_ P

ur (p) | u,r (p) |
p p

U, (p)

O

Repeatedly halves optimal region

’ Learner’s expected reward: —

Reward of best p in hlhdSlght T
Expected regret = g

Gupta and Roughgarden, ITCS'16



Smoothed adversary: MWIS

Sub-linear regret is possible if adversary has a “shaky hand”:
* Node weights wy, ...,Wn and degrees k4, ..., k,, are stochastic

* Joint density of (Wi, ki, ]) is bounded

Density Density
of Wi of Wi /\/

Later generalized by Cohen-Addad, Kanade [AISTATS, "17/];
Balcan, Dick, Vitercik [FOCS'18]: Balcan et al. [UAI'20]: ...

Gupta and Roughgarden, ITCS'16



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration

2. Online algorithm configuration
I.  Worst-case instance
li. Dispersion
iii. Semi-bandit model



Dispersion

Mean adversary concentrates discontinuities near maximizer p*
Even points very close to p* have low utility!

Uy, -, Uy B(0,1) > [—1,1] are (w, k)-dispersed at point p if:

Can be generalized to any bounded subset

Balcan, Dick, Vitercik, FOCS'18



Dispersion

Mean adversary concentrates discontinuities near maximizer p*
Even points very close to p* have low utility!

Uy, -, Uy B(0,1) > [—1,1] are (w, k)-dispersed at point p if:
¢,-ball B(p,w) contains discontinuities for < k of uy_, ..., uy.

Ball of radius w about p contains 2 discontinuities
= (w, 2)-dispersed at p

Balcan, Dick, Vitercik, FOCS'18



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration

2. Online algorithm configuration
I.  Worst-case instance
il.  Dispersion
a. Algorithm

b. Regret bound
c. Banditfeedback

d. Proving dispersion holds
iii. Semi-bandit model



Exponentially weighted forecaster

[Freund, Schapire, JCSS'97, Cesa-Bianchi & Lugosi ‘06, ...]

input: Learning raten > 0
initialization: U,(p) = 0 is the constant function
fort=1,..,T:

choose distribution q; over R% such that q.(p) « exp(nU;_1(p))

Exponentially upweight high-performance parameter settings
choose parameter setting p; ~ q;, receive reward uy, (p;)
observe utility function ug,: B(0,1) - [0,1]
update Uy = Up_1 + uy,



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration

2. Online algorithm configuration
I.  Worst-case instance
il.  Dispersion
a. Algorithm

b. Regret bound
c. Banditfeedback

d. Proving dispersion holds
iii. Semi-bandit model



Regret

Regret = ),¢— 1uxt(P) Y- 1uxt(pt)

Theorem: Suppse uy_, ..., uy.: B(0,1) - [0,1] are:
1. Piecewise L-Lipschitz
2. (w, k)-dispersed at p*

EWF has regret 0 (\/Td log— + TLw + k)

When is this a good bound?

Forw = # and k = O(NT), regretis 0(NTd )

Balcan, Dick, Vitercik, FOCS'18



Regret upper bound: Proof sketch

Goal:

W, = j exp(nU.(p))dp
B(0,1)

-

-

N
Something in terms

of OPT = X{_; u; (p*)

J

(Ut<p> =) ui(ﬂ))
=1

-

N\

N
Something in terms

of ALG = ZZ=1 Uy (Pt)/

Learner’s performance (ALG) is sufficiently large compared to OPT

Balcan, Dick, Vitercik, FOCS'18



Regret upper bound: Proof sketch

Goal:

W, = J exp(nU.(p))dp
B(0,1)

/

-

Something in terms
of OPT = X{_; u; (p*)

~

J

(Ut<p> =) ui(ﬂ))
=1

< % < exp(ALG(e77 — 1))

° 1

|

Standard
EWF analysis

|

Balcan, Dick, Vitercik, FOCS'18



Regret upper bound: Proof sketch

W = f exp(nU,(p))dp (Utm):iu;(m)
B(0,1) T=1

-

Goal:

-

Something in terms
of OPT = X{_; u; (p*)

~

J

Wer = f exp| n
B(0,1)

t=1

ZT: u; (p)

) dp = f exp (n
B(p*,w)

< Wr < exp(ALG(e77 — 1))

0
T
t=

Us (p)) dp

Balcan, Dick, Vitercik, FOCS'18



Regret upper bound: Proof sketch

4 )

L W
Something in terms < T < exp(ALG(e" — 1))

of OPT = Y {_, u;(p") | — W,
\_ J

T

T
Wr = f exp (n Z Uus (p)) dp = f exp (n z Uus (p)) dp
B(0,1) B(p*,.w)

t=1 t=1

Goal:

> f exp(n(OPT — k — TLw))dp
B(p*,w)

= Vol(B(p*, W)) exp(r](OPT — k — TLW))

Balcan, Dick, Vitercik, FOCS'18



Regret upper bound: Proof sketch

Vol(B(p W)) exp(n(OPT k — TLW))
Vol(B(0,1)) W0

— < exp(ALG(e77 — 1))

Rearranging and setting n = \/%log%:

Regret = OPT — ALG =0 (\/Td log% + TLw + k)

Balcan, Dick, Vitercik, FOCS'18



Matching lower bound

Theorem: For any algorithm, exist PW-constant uj, ..., ur s.t.:

L . . 1
Algorithm's regret is ((‘a]nlg) \/Td log —+ k)

Inf over all (w, k)-dispersion parameters that uj, ..., ur satisfy at p*

Upper bound = 0( inf \/Td log% + k)

(w,k)

Balcan, Dick, Vitercik, FOCS'18



Regret lower bound: Proof sketch

u® (p) u(p)
EZ_ E
p p

Lemma [\Weed et al., COLT'16]:
Exist distributions py, py, over {ul®,uW} s t. for any algorithm,

T T ; N
max max [E Zu* —Zu* > —
max max :(p) 2, t(Pe)| 2 2

: Lt=1

[u{, ..., ur drawn from worse of uy, u; ]




Regret lower bound: Proof sketch

u® (p) u(p)

=il

Lemma [\Weed et al., COLT'16]:
Exist distributions py, p;, over {u'®, u(l)} s.t. for any algorithm,

max max [E
tu.uL pel0,1]

- T

Z u; (p) — z u;(pe)| =

Lt=1

\/T

~ 32

Any p > 0.5 is optimal under uy, any p < O 5is optlmal under u;



Regret lower bound: Proof sketch

Worst case instance:

1. Draw uj, ...,u;_ﬁ from worse of uy, u; and define:

T—T
= argmax 3
13 *
pE{Z, Z} t=1 utEp)
2. Define u,’?(p) = 1{|p—p*|si} fort > T—\/T B
10

Note: p* € argmax Y1, u;(p) —T 7

Balcan, Dick, Vitercik, FOCS'18



Regret lower bound: Proof sketch

Analysis:

* Regret > Z—z (follows from lemma by Weed et al., [COLT'16])

+ Lower bound follows from fact that YL = Q( inf JT logi + k)
64 (w,k) w

Only last k = VT functions have discontinuities in (-
1 1
k __, *k +_
[p g’ 8]
= U3, ..., U are (W = %,k = \/T)—dispersed around p*

Balcan, Dick, Vitercik, FOCS'18



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration

2. Online algorithm configuration
I.  Worst-case instance
il.  Dispersion
Algorithm

a.
b. Regret bound

c. Banditfeedback

d. Proving dispersion holds

iii. Semi-bandit model



Bandit feedback

Over T timestepst =1, ..., T:
1. Learner chooses parameter setting p;
Nature (or adversary &) chooses problem instance x,

2.
3. Learner obtains reward u, (x;) = uy,(p¢)
4. Learner only observes uy, (p;) (not entire function)




Bandit feedback

Theorem: If uj,...,u7: B(0,1) —» [0,1] are:
1. Piecewise L-Lipschitz
2. (w, k)-dispersed at p*

. d
The UCB algorithm has regret O (\/Td (%) + TLw + k)

*Ifd =1,w=5= and k = 0(T?/3), regretis O(LT?/3)
d+1

\/_
a d+1 d+1

e lfw="Tarz" " k = 0(Td+2) then regretis O (Td+2(\/d3d + L))

Balcan, Dick, Vitercik, FOCS'18



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration

2. Online algorithm configuration
I.  Worst-case instance
il.  Dispersion
a. Algorithm

b. Regret bound
c. Banditfeedback

d. Proving dispersion holds
iii. Semi-bandit model



Smooth adversaries and dispersion

Adversary chooses thresholds u;:0,1] — {0,1} ‘
Discontinuity 7 “smoothed” by adding Z~N(0, ¢2)

0 T T+ 7 1

Lemma: WHP, Yw, uj, ..., uy are (W, 0 (T7W + \/T))—dispersed

Corollary: w = % = Full information regret = 0 (\/Tlog%)

Balcan, Dick, Vitercik, FOCS'18



Simple example: knapsack

Problem instance:
* n items, item i has value v; and size s;
« Knapsack with capacity K

Goal: find most valuable items that fit

Algorithm (parameterized by p = 0):

Add items in decreasing order of =

[2
s!
[Gupta and Roughgarden, ITCS'16]

l



Dispersion for knapsack

Theorem: If instances randomly distributed s.t. on each round:
1. Each v; independent from s;

2. All (v;, v;) have joint density functions with range < [0, k],

1
W.h.p., forany a > = uj, .., U are

(5 (Tl_a) ,O((# items)zT“)>—dispersed

K

Corollary: Full information regret = 0 ((# items)zﬁ)

Balcan, Dick, Vitercik, FOCS'18



More results for algorithm configuration

Under no assumptions, we show dispersion for
Integer quadratic programming approximation algs

Based on semi-definite programming relaxations
* s-linear rounding [Feige & Langberg "06]

e Qutward rotations [Zwick '99]
« Both generalizations of Goemans-Williamson max-cut alg ['95]

Leverage algorithm’s randomness to prove dispersion

Balcan, Dick, Vitercik, FOCS'18



Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration

2. Online algorithm configuration
I.  Worst-case instance
il.  Dispersion
lii. Semi-bandit model



Semi-bandit model

« Computing the entire function ui(p) can be challenging

« Often, it's easy to compute interval in which u;(p;) is constant
« E.g.,in IP, simple bookkeeping with CPLEX callbacks

* Semi-bandit model: |earner learns u;(p;) and interval
ur (p)
Balcan, Dick, Pegden [UAI'20]: “
* Regret bounds that are nearly as good as full info
* Introduce a more general definition of dispersion




Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs



Different types of tasks

Node level

Graph-level prediction 4—

Figure by Leskovec



Prediction with graphs: Examples
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Graph-level tasks:
E.g., for a molecule represented as a graph, could predict:
« What the molecule smells like
* Whether it will bind to a receptor implicated in a disease

Figure by Sanchez-Lengeling et al. ['21]



Prediction with graphs: Examples
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Node-level tasks:
E.g., political affiliations of users in a social network

Figure by Sanchez-Lengeling et al. ['21]



Prediction with graphs: Examples

Sophia I Sophia
Q : - Q
L \
( /é\ [ < a ) \
oy | \
Adam\ I Adam\ \
q Maya | q Aaya \
\J —_ l Ng \
David . David

Edge-level tasks: E.g.:
« Suggesting new friends
e Recommendations on Amazon, Netflix, ...

Figure by Ahmad et al. ['20]



GNN motivation

Main question:
How to utilize relational structure for better prediction?



Graph neural networks: First step

 Design features for nodes/links/graphs
* Obtain features for all training data

D ..t
ER ....... € RD

Lin,k"féatu res

.
..
.
.
"""
.
..
..
.

""-.g_araph features

Figure by Leskovec



Graph neural networks: Objective

Idea:
1. Encode each node and its neighborhood with embedding

2. Aggregate set of node embeddings into graph embedding
3. Use embeddings to make predictions

o Predict user is
Republican

Predict useris
Democrat

Figure by Jegelka



https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks



https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks



https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks



https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks



&

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks



Node message

N B

Deep neural network

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks



https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks
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Encoding neighborhoods: General form

h,(f) = x, (feature representation for node u)

In each round k € [K], for each node v:
1. Aggregate over neighbors

mfj‘({,_) — AGGREGATE®) ({hﬂ“”: ue N(v)})

[ Neighborhood of v ]




Encoding neighborhoods: General form

|
LNP
In each round k € [K], for each node v: D

\.
1. Aggregate over neighbors ‘U

m{ ) = AGGREGATE® ({hﬂ“”: ue N(v)}) ./ x

2. Update current node representation
h{® = COMBINE® (h{™, m{? )

h,(f) = x, (feature representation for node u)

Figure by Jegelka



The basic GNN .y

[Merkwirth and Lengauer ‘05; Scarselli et al. "09] &U

My = AGGREGATE({hy: u € N(v)}) = z h,

UEN (v)

COMBINE(h,, my(yy) = 0(Wseithy + Wheigh™n(v) + b)

[ Trainable parameters ]

Non-linearity (e.g.,
tanh or RelLU)

Figure by Jegelka



|
Aggregation functions ]'“Iu/'
“

My = AGGREGATE({hy: u € N(v)}) = 69 h,

UEN (v)

Other element-wise aggregators, e.g.:
Maximization, averaging

Figure by Jegelka



Node embeddings unrolled

TARGET NODE

INPUT GRAPH A <« O SRS .

Grey boxes: aggregation functions that we learn

Figures by Leskovec



Node embeddings unrolled

TARGET NODE =

INPUT GRAPH A .. <

Grey boxes: aggregation functions that we learn

Figures by Leskovec



Node embeddings unrolled

shared

weights
TARGET NODE layer O

l / (input)
IaYer 1
A‘A ...... i o
o L
.® @

» oY
4
INPUT GRAPH 04. 4 ................. .4'-: ----- i

Grey boxes: aggregation functions that we learn

Figures by Leskovec



Weight sharing

Use the same aggregation functions for all nodes

TARGET NODE

08 o B o
‘ i ‘ shared parameters ‘ i
'-.................................: ...... ‘ L T LT LT LTI ™S ........--__'.' X
INPUT GRAPH @ 'YX @ © @ @...
S_
| iy
Can generate encodlngs for < | e
. \ —
previously unseen nodes & graphs! | =

Figures by Leskovec



Training a GNN

* What is a data point?

Node and its

neighborhood Entire graph

* What to specity?
« Aggregate and combine functions

« Readout function: combines node embeddings — graph embedding
* Loss function on prediction

e Train with SGD

Slide by Jegelka



Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs

Velickovi¢, Ying, Padovano, Hadsell, Blundell, ICLR'20
Cappart, Chételat, Khalil, Lodi, Morris, Velickovi¢, arXiv'21



Problem-solving approaches

Trivially strong generalization

+ Operate on raw inputs
Compositional (subroutines)

+ Generalize on noisy conditions
+ Models reusable across tasks Guaranteed correctness
Require big data Interpretable operations
Unreliable when extrapolating - Input must match spec
Lack of interpretability Not robust to task variations

+ + + +

s it possible to get the best of both worlds?

Velickovié



Previous work

Previous work:
* Shortest path [Graves et al. "16; Xu et al., "19]
* Traveling salesman [Reed and De Freitas '15]
* Boolean satisfiability [Vinyals et al. "15; Bello et al., "16; ...]
* Probabilistic inference [Yoon et al., 18]

Ground-truth solutions used to drive learning
Model has complete freedom mapping raw inputs to solutions



Neural graph algorithm execution

Key observation: Many algorithms share related subroutines
E.g. Bellman-Ford, BFS enumerate sets of edges adjacent to a node

Neural graph algorithm execution
 Learn several algorithms simultaneously

* Provide intermediate supervision signals
Driven by how a known classical algorithm would process the input

Velickovi¢, Ying, Padovano, Hadsell, Blundell, ICLR'20



Outline (applied technigues)

1. GNNs overview

2. Neural algorithmic alignment
i. Example algorithms
il. Experiments
iii. Additional motivation
iv. Additional research

3. Integer programming with GNNs



Breadth-first search

e Source node s

. a1 |1 ifi=s
Initial input x; {O £ g
* Node is reachable from s if any of its neighbors are reachable:
1 ifx” =1
(t+1) _ . ()
X — )1 if3jst(,i) €EEandx;” =1
k0 else

) (t+ 1)

l

» Algorithm output at round ¢: y,



Bellman-Ford (shortest path)

e Source node s
ey 0 ifi=s
e Initial (1) _
nitial Input x; {OO o
* Node is reachable from s it any of its neighbors are reachable
Update distance to node as minimal way to reach neighbors

x.(tﬂ) = min {x.(t), min x.(t) + e.(.t)}
y b Gaee Jt



Bellman-Ford: Message passing

, min x( ) + evu}

Key idea (roughly speaking): Train GNN so that h(t) ,ff), vVt

(Really, so that a function of A” ~ x)

Velickovi¢, Ying, Padovano, Hadsell, Blundell, ICLR'20



Outline (applied technigues)

1. GNNs overview

2. Neural algorithmic alignment
i. Example algorithms
li. Experiments
iii. Additional motivation
iv. Additional research

3. Integer programming with GNNs



Shortest-path predecessor prediction

0.8
>
§ 0.6 ——-Mean aggregator
§ 0.4 ——Sum aggregator
20
Max aggregator
0.2
0

20 nodes 50 nodes 100 nodes

Improvement of max-aggregator increases with size
It aligns better with underlying algorithm [Xu et al., ICLR"20]

Velickovi¢, Ying, Padovano, Hadsell, Blundell, ICLR'20



Learning multiple algorithms

Learn to execute both BFS and Bellman-Ford simultaneously

At each step t, concatenate relevant xi(t) and yl@ values

Comparisons
* (no-reach): Learn Bellman-Ford alone
» Doesn’t simultaneously learn reachability
* (no-algo):
« Don't supervise intermediate steps
(1)

* Learn predecessors directly from input x;

Velickovi¢, Ying, Padovano, Hadsell, Blundell, ICLR'20



Shortest-path predecessor prediction

0.8
3 0.6 M
o - ax aggregator
5
04 Max aggregator (no-reach)
<

Max aggregator (no-algo)
0.2
0

20 nodes 50 nodes 100 nodes
* (no-reach) results: positive knowledge transfer
* (no-algo) results: benefit of supervising intermediate steps

Velickovi¢, Ying, Padovano, Hadsell, Blundell, ICLR'20



Outline (applied technigues)

1. GNNs overview

2. Neural algorithmic alignment
i. Example algorithms
il. Experiments
lii. Additional motivation
iv. Additional research

3. Integer programming with GNNs



Key question

Key question in neural algorithmic alignment:

If we're just teaching a NN to imitate a classical algorithm...
Why not just run that algorithm?



Why use GNNs for algorithm design?

Classical algorithms are designed with abstraction in mind
Enforce their inputs to conform to stringent preconditions

However, we design algorithms to solve real-world problems!

YA
000
71N

Natural inputs

Slide by Velickovi¢



Abstractitying the core problem

* Assume we have real-world inputs
...but algorithm only admits abstract inputs

* Could try manually converting from one input to another

YA
000
71N

Natural inputs > Abstract inputs » Abstract outputs

Slide by Velickovi¢



Attacking the core problem

* Alternatively, replace human feature extractor with NN
« Still apply same combinatorial algorithm

* Issue: algorithms typically perform discrete optimization
* Doesn't play nicely with gradient-based optimization of NNs

[>
of
000
T

9]

Natural inputs > Abstract inputs » Abstract outputs

Slide by Velickovi¢



Algorithmic bottleneck

Second (more fundamental) issue: data efficiency
» Real-world data is often incredibly rich
« We still have to compress it down to scalar values

The algorithmic solver commits to using this scalar
Assumes it is perfect!

If there's insufficient training data to estimate the scalars:
 Alg will give a perfect solution
e ...butin a suboptimal environment

Slide by Velickovi¢



Neural algorithmic pipeline

g

@9?3

AN

© OF

©—0 ©—®
Inputx(l) "‘ —f>
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Fe er
o
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F® ©F
=
P

Encoder network f
* E.g., makes sure input is in correct dimension for next step

Velickovi¢, Ying, Padovano, Hadsell, Blundell, ICLR'20; Figure by Cappart et al.



Neural algorithmic pipeline

P
i h W
()I %A 0099 .
Input x — Output y
@@ @ O« ® @ U=@<=®
h L b

Processor network P
Graph neural network

* Run multiple times (termination determined by a NN)

Velickovi¢, Ying, Padovano, Hadsell, Blundell, ICLR'20; Figure by Cappart et al.



Neural algorithmic pipeline

g

@9?3

AN

© OF

©—0 ©—®
Inputx(l) "‘ —f>

© &

Fe er
o
O~
OO
© ©
© ©
&
©O
<

F® ©F
=
P

Decoder network g
* Transform’s GNNs output into algorithmic output

Velickovi¢, Ying, Padovano, Hadsell, Blundell, ICLR'20; Figure by Cappart et al.



Neural algorithmic pipeline

44
Abstract inputs x
(%

0 © @=@ : Abstract outputs
g (f<@<@ T~ gP(f(x))

?@6?

1. On abstract inputs, learn encode-process-decode functions

Figure by Cappart et al.



Neural algorithmic pipeline

&
O—0 OO >0 ©<«@  Ab
o : stract outputs
Abstract inputs x I—f> I_/: = I-)M: y = (P((F;))
© O © <0 ® @ © G TrIPUk
h b oW

After training on abstract inputs, processor P:
1. Is aligned with computations of target algorithm
2. Admits useful gradients
3. Operates over high-dim latent space (better use of data)

Figure by Cappart et al.



Neural algorithmic pipeline

i
Q=0 @<«®@ : Ab
: stract outputs
Abstract inputs X "‘ —> z — y & (P( (F;))
© U<0 ©® @ G<@<«@ 7~9PUG
h b W
Natural inputs x

Natural outputs y

2. Set up encode-decode functions for natural inputs/outputs

Figure by Cappart et al.



Neural algorithmic pipeline

P
[T T.; L,
@ L W g @>© @=@® ' Abstract outputs
Abstract inputs X — _ (P( ( )))
@@ © U«@«@ Y~9\PUK
W b fis,

I a g / \ D @
Natural inputs x Natural outputs y

3. Learn parameters using loss that compares § (P (f(x))) toy

Figure by Cappart et al.



Outline (applied technigues)

1. GNNs overview

2. Neural algorithmic alignment
i. Example algorithms
il. Experiments
iii. Additional motivation
iv. Additional research

3. Integer programming with GNNs



Additional research

Lots of research in the past few years! E.g.:

* How to achieve algorithmic alignment & theory guarantees
e Xu et al.,, ICLR'20; Dudzik, Velickovi¢, NeurlPS'22

« CLRS benchmark
 Sorting, searching, dynamic programming, graph algorithms, etc.
 Velickovi¢ et al. ICML'22; Ibarz et al. LoG'22; Bevilacqua et al. ICML'23

* Primal-dual algorithms
e Numeroso et al., ICLR'23



Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs

Gasse, Chételat, Ferroni, Charlin, Lodi;: NeurlPS'19



Variable selection policy (VSP)

Better branching order than x4, x,, x5, x,7



Variable selection policy (VSP)

Better branching order than x4, x,, x3,x,? E.g., x4, x3, %1, x>



Variable selection policy (VSP)

Chooses variables to branch on on-the-fly
Rather than pre-defined order



Variable selection policy (VSP)

At node j with LP obj

* Let z;" (j) be the

ective value z(j):
_P objective value after setting x; = 1

* Let z; (j) be the

VSP example:

P objective value after setting x; = 0

Branch on the variable x; that maximizes

max{z(j) — z;"

(/),107°} - max{z(j) — z; (j), 107°}

If score was (z(j) — z7 (D) (z(j) — z7 () and z(j) — z" (j) = 0:

would lose inform

ation stored in z(j) — z; (j)



Strong branching

Challenge: Computing z; (j), z; (j) requires solving a lot of LPs
« Computing all LP relaxations referred to as strong-branching
* Very time intensive

Pro: Strong branching leads to small search trees

Idea: Train an ML model to imitate strong-branching
Khalil et al. [AAAI'16], Alvarez et al. [INFORMS JoC’'17], Hansknecht et al. [arXiv'18]

This paper: using a GNN

Gasse et al.; NeurlPS'19



Outline (applied technigues)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs

i. Machine learning formulation
ii. Baselines

. Experiments

iv. Additional research



Problem formulation

Goal: learn a policy m(a; | s;)

[ Probability of branching on variable a; when solver is in state s; ]

Approach (imitation learning):
 Run strong branching on training set of instances

» Collect dataset of (state, variable) pairs § = {(s;, a)}_,
* Learn policy mg with training set S

Gasse et al.; NeurlPS'19



State encoding

State s; of B&B encoded as a bipartite graph
with node and edge features

Constraints Variables

max 9x; + 5x, + 6x3 + 4x,
s.t. 6xy +3x, +5x3 +2x, <10 (cy)

x3+x, <10 (cy)
—Xx1 +x3 <0 (c3)
_xz + X4 S O (C4-)

Xq1,X,X3,%X4 € {0,1}

Gasse et al.; NeurlPS'19



State encoding

State s; of B&B encoded as a bipartite graph
with node and edge features

Constraints Variables

- Edge feature: constraint coefficient

- Example node features:
« Constraints:
» Cosine similarity with objective
» Tightin LP solution?
 Variables:

* Objective coefficient
 Solution value equals upper/lower bound?

Gasse et al.; NeurlPS'19



GNN structure

1. Pass from variables — constraints

c;i < fel € Z gc(ci»vj»eij)

j:(i,j)€EE Constraints Variables
Constraint 2-layer MLP with relu Edge
features activations features

Variable
features

o o

Gasse et al.; NeurlPS'19



GNN structure

1. Pass from variables — constraints

C; < fc (Ci» Z gC(Ci»vj:eij))

j:(i,j)EE
2. Pass from constraints — variables

”j‘—fv(”j» z gv(ci’”j»eij))

i:(i,j)EE

Constraints Variables

o o

Gasse et al.; NeurlPS'19



GNN structure

3. Compute distribution over variables

Constraints Variables

(x| S¢)

4 )
2-layer MLP mixa | st)

+ softmax

m(x3 | s¢)

1\ J
w(xq | S¢)

Gasse et al.; NeurlPS'19



Outline (applied technigues)

1. GNNs overview
2. Neural algorithmic alignment

3. Integer programming with GNNs
i.  Machine learning formulation
ii. Baselines
. Experiments
iv. Additional research



Reliability pseudo-cost branching (RPB)

Rough idea:
» Goal: estimate z(j) — z; (j) w/o solving the LP with x; = 1
 Estimate = avg change after setting x; = 1 elsewhere in tree
This is the “pseudo-cost”

« “Reliability”: do strong branching if estimate is “unreliable”
E.g., early in the tree

Default branching rule of SCIP (leading open-source solver):
max{Z_‘[(]_'), 10‘6} : maX{Z_{(]_'), 10‘6}

[ Estimate of z(j) — z;" (j) ] [ Estimate of z(j) — z; (j) ]

Achterberg and Berthold, CPAIOR'09



Learning to rank approaches

* Predict which variable strong branching would rank highest
* Using a linear model instead of a GNN

e Khalil et al. [AAAI"16]:
Use learning-to-rank algorithm SVMrrk [ Joachims, KDD'06]

« Hansknecht et al. [arXiv'18]
Use learning-to-rank alg lambdaMART [Burges, Learning’10]



Outline (applied technigues)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs

i.  Machine learning formulation
ii. Baselines

lii. Experiments

iv. Additional research



Set covering instances

Always train on “easy” instances

1000 columns, 500 rows

Model Time

Easy

Wins Nodes

1000 columns, 2000 rows

Time

Hard

Wins Nodes

FSB 17.30 £ 6.1%

0/100 17 £13.7%

RPB 8.98 + 4.8%
TREES 9.28 4+ 4.9%
SVMRANK 8.10 &+ 3.8%
LMART 7.194+ 4.2%

0/100 54 £20.8%
0/100 187 £ 9.4%
1/100 165 £ 8.2%
14/100 167 £ 9.0%

GCNN  6.59 + 3.1% 85/100 134 £ 7.6%

3600.00 £ 0.0%

0/ 0O n/a *nla%

1677.02 £ 3.0%
2869.21 = 3.2%
2389.92 + 2.3%
2165.96 = 2.0%

4/ 6547299 = 4.9%
0/ 3559013 & 9.3%
0/ 47 42120 £ 5.4%
0/ 5445319 & 3.4%

1489.91 = 3.3% 66/ 70 29981 = 4.9%

Gasse et al.; NeurlPS'19



Set covering instances

[ Runtime in seconds with a timeout of 1 hour ]

[ Number instances with fastest runtime / number solved ]

! Size of B&B tree ]

Eas
Model | Time l | Wins l Nodesl

Time

Hard

Wins Nodes

FSB  17.30% 6.1% 0/100 17 £13.7%

RPB 898+ 48% 0/100 54 +20.8%
TREES 928 &+ 49% 0/100 187 &+ 9.4%
SVMRANK 8.10+ 3.8% 1/100 165 + 8.2%
LMART 7.194+ 4.2% 14/100 167 = 9.0%
GCNN  6.59 + 3.1% 85/100 134 &+ 7.6%

3600.00 == 0.0%

0/ 0 n/a xna%

1677.02 £ 3.0%
2869.21 = 3.2%
2389.92 + 2.3%
2165.96 = 2.0%

4/ 6547299 = 4.9%
0/ 3559013 & 9.3%
0/ 47 42120 £ 5.4%
0/ 5445319 & 3.4%

1489.91 = 3.3% 66/ 70 29981 = 4.9%

Gasse et al.; NeurlPS'19



Set covering instances

* GNN is faster than SCIP default VSP (RPB)
* Performance generalizes to larger instances

* Similar results for auction design & facility location problems

Easy
Model Time Wins Nodes

Time

Hard
Wins Nodes

FSB  17.30% 6.1% 0/100 17 £13.7%

RPB 898 + 4.8% 0/100 54 +£20.8%
TREES 928 + 49% 0/100 187 &= 9.4%
SVMRANK 8.10+ 3.8% 1/100 165 + 8.2%
LMART 7.194+ 4.2% 14/100 167 = 9.0%
GCNN 6.59 + 3.1% 85/100 134 + 7.6%

3600.00 £ 0.0%

0/ 0 n/a xna%

1677.02 £ 3.0%
2869.21 = 3.2%
2389.92 + 2.3%
2165.96 = 2.0%

4/ 6547299 = 4.9%
0/ 3559013 & 9.3%
0/ 47 42120 £ 5.4%
0/ 5445319 & 3.4%

1489.91 = 3.3% 66/ 70 29981 = 4.9%

Gasse et al.; NeurlPS'19



Max independent set instances

RPB is catching up to GNN on MIS instances

Easy Hard
Model Time Wins Nodes Time Wins Nodes

FSB  23.58 £299% 9/100 7 £35.9% 3600.00+ 0.0% 0/ O n/a +n/a%

RPB 8.77 £11.8% 7/100 20 +£36.1% 2045.61 £18.3%|22/ 42| 2675 £24.0%
TREES 10.75 £22.1% 1/100 76 £44.2% 3565.12 + 12% 0/ 338296+ 4.1%
SVMRANK 8.83 +14.9% 2/100 46 +32.2% 2902.94 + 9.6% 1/ 18 6256 =15.1%
LMART  7.31 +12.7% 30/100 52 +38.1% 3044.94 = 7.0% 0/ 12 8893 + 3.5%
GCNN  6.43 £11.6% 51/100 43 £40.2% 2024.37 +£30.6%(25/ 29| 2997 £-26.3%

Gasse et al.; NeurlPS'19



Outline (applied technigues)

1. GNNs overview
2. Neural algorithmic alignment
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i.  Machine learning formulation
ii. Baselines

. Experiments

iv. Additional research



Additional research

CPU-friendly approaches

Gupta et al., NeurlPS'20

Bipartite representation inspired many follow-ups
Nair et al., '20; Sonnerat et al., '21; Wu et al., NeurlPS'21; Huang et al. ICML'23; ...

Survey on Combinatorial Optimization & Reasoning w/ GNN's:
Cappart, Chételat, Khalil, Lodi, Morris, Velickovi¢, JMLR'23



Conclusions and future directions



Overview

@ Theoretical guarantees

a. Statistical guarantees for algorithm configuration
i. Broadly applicable theory for deriving generalization guarantees
ii. Proved using connections between primal and dual classes
b. Online algorithm configuration
a. Impossible in the worst cases
b. Introduced dispersion to provide no-regret guarantees



Overview

@ Theoretical guarantees
a. Statistical guarantees for algorithm configuration
b. Online algorithm configuration

© Applied techniques: Graph neural networks
a. Neural algorithmic alignment
b. GNNs for variable selection in branch-and-bound



Future work: Tighter statistical bounds

WHP Vvp,
, . =1 . ) . )
given training set of size 0 (6—2 (Pdim(G*) + VCdim(F*) log k))

avg utility over training set - exp utility| < €

[ Number of boundary functions J

k is often exponential
Can lead to large bounds

€7 | expect this can sometimes be avoided!
P
., Would require more information about duals




Future work: Knowledge transtfer

* Training a GNN to solve multiple related problems...
can sometimes lead to better single-task performance

* E.g., training reachability and shortest-paths ( )
V.S. just training shortest-paths ( )

1

Shortest-paths 0.5 Max aggregator

accuracy
Max aggregator (no-reach)

20 nodes 50 nodes 100 nodes

Velickovi¢, Ying, Padovano, Hadsell, Blundell, ICLR'20



Future work: Knowledge transtfer

* Training a GNN to solve multiple related problems...
can sometimes lead to better single-task performance

* Can we understand theoretically why this happens?
 For which sets of algorithms can we expect knowledge transfer?



Future work: Size generalization

Machine-learned algorithms can scale to larger instances
Applied research: Dai et al., NeurlPS'17; Velickovi¢, et al., ICLR'20; ...

Goal: eventually, solve problems no one’s ever been able to solve

However, size generalization is not immediate! It depends on:

* The machine-learned algorithm
Is the algorithm scale sensitive?

Example [Xu et al., [CLR'21]:
« Algorithms represents by GNNs do generalize
* Algs represented by MLPs don’t generalize across size



Future work: Size generalization

Machine-learned algorithms can scale to larger instances
Applied research: Dai et al., NeurlPS'17; Velickovi¢, et al., ICLR20; ...

Goal: eventually, solve problems no one’s ever been able to solve

However, size generalization is not immediate! It depends on:

* The machine-learned algorithm
Is the algorithm scale sensitive?

* The problem instances
As size scales, what features must be preserved?




Future work: Size generalization

Can you:
1. Shrink a set of big integer programs

graphs

2. Learn a good algorithm on the small instances
3. Apply what you learned to the big instances?



Future work: ML as a toolkit for theory

/-»Which algorithm classes to optimize over?-\

Classical algorithm Data-driven
design & analysis algorithm design

\ Q: Why are some machine-learned algs so dominant? /

E.g., Dai et al. [NeurlPS"17] write that their RL alg discovered:
“New and interesting” greedy strategies for MAXCUT and MVC
“which intuitively make sense but have not been analyzed before/”
thus could be a “good assistive tool for discovering new algorithms.”



Additional slides



Outline (additional applied techniques)

1. Reinforcement learning overview
2. Learning greedy heuristics with RL



L earner interaction with environment

Learner

State s Reward r Action a

Environment

Slide by Kolter



Markov decision processes

S: set of states (assumed for now to be discrete)

A: set of actions

Transition probability distribution P(s’ | s, a)
Probability of entering state s’ from state s after taking action a

Reward function R:S - R

Goal: Policy m: § = A that maximizes total (discounted) reward

Slide by Kolter



Policies and value functions

Policy is a mapping from states to actions m: S — A

Value function for a policy:
Expected su_rrgoof discounted rewards

Vi(s) = E

D VR(s) Isy =5, = 7(50), Sevalserac ~ P

Gl

[ Discount factor ]




Optimal policy and value tunction

Optimal policy m* achieves the highest value for every state
V™ (s) = max V™ (s)
T

Value function is written V* = V™

Several different ways to find *
* Value iteration
* Policy iteration

Slide by Kolter



Challenge of RL

MDP (S,A,P,R):
¢ §: set of states (assumed for now to be discrete)
* A: set of actions
* Transition probability distribution P(s;41 | ¢, a;)
 Reward function R: S - R

RL twist: We don't know P or R, or too big to enumerate

Slide by Kolter



Q-learning

Q functions:
Like value functions but defined over state-action pairs

07(5,@) = R()+v ) P(s'15,a)Q"(s',n(s")

s'es

l.e., Q function is the value of:
1. Starting in state s
2. Taking action a
3. Then acting accordington



Q-learning

Q*(s,a) =R(s)+vy Z P(s'|s,a) max Q*(s',a")
s'es

=R(s)+vy z P(s'|s,a)V*(s")

s'es

Q* is the value of:
1. Starting in state s
2. Taking action a
3. Then acting optimally



Q-learning

(High-level) Q-learning algorithm
initialize 0(s,a) < 0,Vs,a
repeat
Observe current state s and reward r
Take action a = argmax Q(s,") and observe next state s’

Improve estimate Q based on s,r,a,s’

Can use function approximation to represent Q compactly
Q(S' Cl) — fQ(S; Cl)



Outline (additional applied techniques)

1. Reinforcement learning overview
2. Learning greedy heuristics with RL

Dai, Khalil, Zhang, Dilkina, Song; NeurlPS'17



RL for combinatorial optimization

Tons of research in this area

Travelling salesman Bin packing
Bello et al., ICLR'17; Dai et al., NeurlPS'17; Hu et al., ‘17; Laterre et al., ‘18; Cai et al.,
Nazari et al., NeurlPS'18: ... DRL4KDD'19; Li et al., '20; ...
Maximum cut Minimum vertex cover
Dai et al., NeurlPS'17; Cappart et al., Dai et al., NeurlPS'17; Song et al., UAI'19; ...

AAAI'19: Barrett et al., AAAI'20; ...

This section: Example of a pioneering work in this space



Overview

Goal: use RL to learn new greedy strategies for graph problems
Feasible solution constructed by successively adding nodes to solution

Input: Graph ¢ = (V,E), weights w(u, v) for (u,v) € E

RL state representation: Graph embedding

Dai, Khalil, et al.; NeurlPS'17



Outline (additional applied techniques)

1. Reinforcement learning overview

2. Learning greedy heuristics with RL
i. Examples: Min vertex cover and max cut
ii. RLformulation
. Experiments



Minimum vertex cover

Find smallest vertex subset such that each edge is covered

<IN



Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum

Degree Degree
sum: / sum: 6

<IN




Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

<IN



Maximum cut

Find partition (S,V \ S) of nodes that maximizes

z w(u, v)

(u,v)ec
where C = {(u,v) e E:u € S, v &S}

If w(u,v) = 1forall (u,v) € E:

Z w(u,v) =5

(u,v)ec

.



Maximum cut

Find partition (S,V \ S) of nodes that maximizes

Z w(u, v)

(u,v)ec
where C = {(u,v) e E:u € S, v &S}

Greedy: move node from one side of cut to the other
Move node that results in the largest improvement in cut weight

<o



Maximum cut

Find partition (S,V \ S) of nodes that maximizes

Z w(u, v)

(u,v)ec
where C = {(u,v) e E:u € S, v &S}

Greedy: move node from one side of cut to the other
Move node that results in the largest improvement in cut weight

Scoring function that guides greedy algorithm @



Outline (additional applied techniques)

1. Reinforcement learning overview

2. Learning greedy heuristics with RL
i. Example: Min vertex cover and max cut
ii. RL formulation
. Experiments



Reinforcement learning formulation

State:
» Goal: encode partial solution S = (v, vy, ..., vi5|), v; EV

E.g., nodes in independent set, nodes on one side of cut

Dai, Khalil, et al.; NeurlPS'17



Reinforcement learning formulation

State:
* Goal: encode partial solution § = (vl,vz, ...,v|5|),vi eV
* Use GNN to compute graph embedding u

1 ifves

Initial node features x, = {O olse

Action: Choose vertex v € V' \ S to add to solution

Transition (deterministic): For chosenv eV \ §,setx, =1

Dai, Khalil, et al.; NeurlPS'17



Reinforcement learning formulation

Reward: (S, v) is change in objective when transition S — (S, v)

( ~
1 ifv=argmaxQ(u,v')
Policy (deterministic): m(v|S) = < g’e_ﬁs o

k0 else

Dai, Khalil, et al.; NeurlPS'17



Outline (additional applied techniques)

1. Reinforcement learning overview

2. Learning greedy heuristics with RL
i. Example: Min vertex cover and max cut
ii. RLformulation
lii. Experiments



Min vertex cover

Barabasi-Albert 1.6| mmm S2V-DQN
random graphs W PN-AC
L 5| "= MVCApprox
R

. MVCApprox-Greed
Paper’s approach R Y

=
s

Approximation ratio to optimal
= =
N w

=
)

"
=

15-20 40-50 50-100 100-200 400-500
Number of nodes in train/test graphs

Dai, Khalil, et al.; NeurlPS'17



Max cut

Barabasi-Albert mEE S2V-DQN
random graphs 1.6/ W= PN-AC
wem SDP

B MaxcutApprox

Paper’s approach

e
wn

e
an

Approximation ratio to optimal

Greedy algorithm

from first few slides =

15-20 40-50 50-100 100-200 200-300
Number of nodes in train/test graphs

Dai, Khalil, et al.; NeurlPS'17



TSP

Uniform random points on 2-D grid

Paper’s approach

* Initial subtour: 2 cities that are
farthest apart
» Repeat the following:

» Choose city that's farthest
from any city in the
subtour

* Insertin position where it
causes the smallest

distance increase
[Rosenkrantz et al., SIAM JoC'77]

e
»

Approximation ratio to optimal

1.0-

=
w

=
N

'
i

S2V-DQN
Farthest
2-opt

PN-AC
Cheapest
Christofides
Closest
Nearest
MST

15-20 40-50 50-100 100-200 200-300
Number of nodes in train/test graphs

Dai, Khalil, et al.; NeurlPS'17



Runtime comparisons

MVC Barabasi-Albert

i 2.0
CPLEX-1st: 1stfeasible ’ ‘

o 1.8 1 I ! a B MVCApprox-Greedy

il e MVCApprox

o 16 ' BN CPLEX-1st

% B CPLEX-2nd

e 1.4 ; B CPLEX-3rd

o oo o CPLEX-4th

Q.

<{ 1.2 Q :

!.‘
1.0 - —— ';w LB o
10-4 10-3 10-2 10-1 100 10! 102 10°

Time (s)

Dai, Khalil, et al.; NeurlPS'17



Min vertex cover visualization
Nodes seem to be selected to balance between:

* Degree
« Connectivity of the remaining graph

Dai, Khalil, et al.; NeurlPS'17



