
Machine learning for algorithm design:
Theoretical guarantees and applied frontiers
Ellen Vitercik
Stanford University

How to integrate machine learning
into algorithm design?

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?

How to integrate machine learning
into algorithm design?

Example: Integer programming solvers
Most popular tool for solving combinatorial (& nonconvex) problems

Routing Manufacturing Scheduling Planning Finance

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Algorithm configuration

Best configuration for routing problems
 likely not suited for scheduling

What’s the best configuration for the application at hand?

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?

How to integrate machine learning
into algorithm design?

Algorithm selection in theory

Worst-case analysis has been the main framework for decades
Has led to beautiful, practical algorithms

Worst-case instances rarely occur in practice

In practice:
Instances solved in past are similar to future instances…

In practice, we have data about
the application domain

Routing problems a shipping company solves

Clustering problems a biology lab solves

In practice, we have data about
the application domain

Scheduling problems an airline solves

In practice, we have data about
the application domain

Existing research

Applied
research

2000 2023

Constraint satisfaction
[Horvitz, Ruan, Gomes, Krautz, Selman, Chickering, UAI’01; …]

Integer programming
[Hutter, Hoos, Leyton-Brown, CPAIOR ’10; …]

Economics (mechanism design)
[Likhodedov, Sandholm, AAAI ‘04, ’05; …]

Computational biology
[Majoros, Salzberg, Bioinformatics’04; …]

Existing research

Applied
research

Theory
research

2000 2023

Automated algorithm configuration and selection
[Gupta, Roughgarden, ITCS’16; Balcan, Nagarajan, Vitercik, White, COLT’17; …]

Learning-augmented algorithms
[Lykouris, Vassilvitskii, ICML’18; Mitzenmacher, NeurIPS’18; …]

Sample complexity of revenue maximization
[Balcan, Blum, Hartline, Mansour, FOCS’05; Elkind, SODA’07; …]

ML + algorithm design: Potential impact

Example: integer programming
• Used heavily throughout industry and science
• Many different ways to incorporate learning into solving
• Solving is very difficult, so ML can make a huge difference

Example: Spectrum auctions

• In ‘16–’17, FCC held a $19.8 billion radio spectrum auction
• Involves solving huge graph-coloring problems

• SATFC uses algorithm configuration + selection
• Simulations indicate SATFC saved the government billions

Leyton-Brown et al., PNAS’17; Leyton-Brown and Hutter, ICML’19 tutorial

Plan for tutorial

Theoretical guarantees
a. Statistical guarantees for algorithm configuration
b. Online algorithm configuration

Applied techniques
a. Graph neural networks

1

2

Plan for tutorial

Theoretical guarantees
a. Statistical guarantees for algorithm configuration
b. Online algorithm configuration

Applied techniques
a. Graph neural networks

1

2

Gupta, Roughgarden, ITCS’16
Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Balcan, Prasad, Sandholm, Vitercik, NeurIPS’21
Balcan, Prasad, Sandholm, Vitercik, NeurIPS’22

Running example: Sequence alignment

Goal: Line up pairs of strings
Applications: Biology, natural language processing, etc.

vitterchik

Did you mean: vitercik

Sequence alignment algorithms

Input: Two sequences 𝑆 and 𝑆′ Output: Alignment of 𝑆 and 𝑆′

A – - C T G
- G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap

𝑆	 = A C T G
𝑆′ = G T C A

Sequence alignment algorithms

Standard algorithm with parameters 𝜌!, 𝜌", 𝜌# ≥ 0:
Return alignment maximizing:

(# matches)	−	𝜌! *	(# mismatches) −	𝜌" *	(# indels) −	𝜌# *	(# gaps)

A – - C T G
- G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap

𝑆	 = A C T G
𝑆′ = G T C A

Sequence alignment algorithms
Can sometimes access ground-truth, reference alignment
E.g., in computational biology: Bahr et al., Nucleic Acids Res.’01; Raghava et al., BMC
Bioinformatics ‘03; Edgar, Nucleic Acids Res.’04; Walle et al., Bioinformatics’04

Requires extensive manual alignments
…rather just run parameterized algorithm

How to tune algorithm’s parameters?
“There is considerable disagreement
among molecular biologists about the
correct choice” [Gusfield et al. ’94]

A – - C T G
- G T C A -

Sequence alignment algorithms
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

Sequence alignment algorithms
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with poorly-tuned parameters

Sequence alignment algorithms
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with poorly-tuned parameters

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA

Alignment by algorithm with well-tuned parameters

Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set 𝑇 of “typical” inputs

3. Find parameter setting w/ good avg performance over 𝑇
Runtime, solution quality, etc.

Sequence 𝑆!
Sequence 𝑆!"

Reference alignment 𝐴!

Sequence 𝑆#
Sequence 𝑆#"

Reference alignment 𝐴#

Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set 𝑇 of “typical” inputs

3. Find parameter setting w/ good avg performance over 𝑇
On average, output alignment is close to reference alignment

Sequence 𝑆!
Sequence 𝑆!"

Reference alignment 𝐴!

Sequence 𝑆#
Sequence 𝑆#"

Reference alignment 𝐴#

Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set 𝑇 of “typical” inputs

3. Find parameter setting w/ good avg performance over 𝑇
Key question:
How to find parameter setting with good avg performance?

Sequence 𝑆!
Sequence 𝑆!"

Reference alignment 𝐴!

Sequence 𝑆#
Sequence 𝑆#"

Reference alignment 𝐴#

Automated parameter tuning procedure

E.g., for sequence alignment:
algorithm by Gusfield et al. [’94]

Many other generic search strategies
E.g., Hutter et al. [JAIR’09, LION’11], Ansótegui et al. [CP’09], …

Key question:
How to find parameter setting with good avg performance?

Key question (focus of this section):
Will that parameter setting have good future performance?

Automated parameter tuning procedure

1. Fix parameterized algorithm
2. Receive training set 𝑇 of “typical” inputs

3. Find parameter setting w/ good avg performance over 𝑇

Sequence 𝑆!
Sequence 𝑆!"

Reference alignment 𝐴!

Sequence 𝑆#
Sequence 𝑆#"

Reference alignment 𝐴#

Automated parameter tuning procedure

Seen Unseen ?
Sequence 𝑆
Sequence 𝑆′

Unknown alignment 𝐴

Sequence 𝑆!
Sequence 𝑆!"

Reference alignment 𝐴!

Sequence 𝑆#
Sequence 𝑆#"

Reference alignment 𝐴#

Key question (focus of this section):
Will that parameter setting have good future performance?

Generalization

Key question (focus of this section):
Good performance on average over training set implies good

 future performance?
Greedy algorithms

Gupta, Roughgarden, ITCS’16 First to ask question for algorithm configuration

Clustering
Balcan, Nagarajan, V, White, COLT’17
Garg, Kalai, NeurIPS’18
Balcan, Dick, White, NeurIPS’18
Balcan, Dick, Lang, ICLR’20

Search
Sakaue, Oki, NeurIPS’22

Numerical linear algebra
Bartlett et al., COLT’22

And many other areas…

This section: Main result

Key question (focus of this section):
Good performance on average over training set implies good

 future performance?

Answer this question for any parameterized algorithm where:
Performance is piecewise-structured function of parameters

Piecewise constant, linear, quadratic, …

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

This section: Main result

𝜌!

𝜌#

Algorithmic
performance
on fixed input

Piecewise constant Piecewise …Piecewise linear

Performance is piecewise-structured function of parameters
Piecewise constant, linear, quadratic, …

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Distance between algorithm’s output given 𝑆, 𝑆$
 and ground-truth alignment is p-wise constant

Example: Sequence alignment

𝜌!

𝜌#

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Piecewise structure

Piecewise structure unifies seemingly disparate problems:

Ties to a long line of research on machine learning for revenue maximization
Likhodedov, Sandholm, AAAI'04, ’05; Balcan, Blum, Hartline, Mansour, FOCS’05; Elkind, SODA’07;
Cole, Roughgarden, STOC’14; Mohri, Medina, ICML’14; Devanur, Huang, Psomas, STOC’16; …

Integer programming
Balcan, Dick, Sandholm, V, ICML’18
Balcan, Prasad, Sandholm, V, NeurIPS’21
Balcan, Prasad, Sandholm, V, NeurIPS’22

Clustering
Balcan, Nagarajan, V, White, COLT’17
Balcan, Dick, White, NeurIPS’18
Balcan, Dick, Lang, ICLR’20

Greedy algorithms
Gupta, Roughgarden, ITCS’16

Computational biology
Balcan, DeBlasio, Dick, Kingsford,
Sandholm, V, STOC’21

Mechanism configuration
Balcan, Sandholm, V, EC’18

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Primary challenge

Algorithmic performance is a volatile function of parameters
Complex connection between parameters and performance

Integer programming solver parameter

Solver search
tree size

Balcan, Prasad, Sandholm, Vitercik, NeurIPS’21

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Applications

2. Online algorithm configuration

ℝ%: Set of all parameters
𝒳: Set of all inputs

Model

Example: Sequence alignment

ℝ#: Set of alignment algorithm parameters
𝒳: Set of sequence pairs

One sequence pair 𝑥 = 𝑆, 𝑆$ 	 ∈ 𝒳

𝑆	 = A C T G
𝑆′ = G T C A

𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
E.g., runtime, solution quality, distance to ground truth, …

Assume 𝑢𝝆 𝑥 ∈ −1,1
Can be generalized to 𝑢𝝆 𝑥 ∈ −𝐻,𝐻

Algorithmic performance

Model

Standard assumption: Unknown distribution 𝒟 over inputs
Distribution models specific application domain at hand

E.g., distribution over pairs of DNA strands

E.g., distribution over pairs of protein sequences

Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥!, … , 𝑥'~𝒟, for any 𝝆,
1
𝑁
7
()!

'

𝑢𝝆 𝑥(− 𝔼*~𝒟 𝑢𝝆 𝑥 ≤	??
Empirical average utility Expected utility

Good average empirical utility Good expected utility

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance

a. Example: Sequence alignment
b. Dual function definition

iii. Main result
iv. Applications

2. Online algorithm configuration

Sequence alignment algorithms

Lemma:
For any pair 𝑆, 𝑆$, there’s a partition of ℝ# s.t. in any region,

algorithm’s output is fixed across all parameters in region

A – - C T G
- G T C A -

𝜌!

𝜌#

𝑆	 = A C T G
𝑆′ = G T C A

Gusfield et al., Algorithmica ‘94; Fernández-Baca et al., J. of Discrete Alg. ’04

Sequence alignment algorithms

Lemma:
For any pair 𝑆, 𝑆$, there’s a partition of ℝ# s.t. in any region,

algorithm’s output is fixed across all parameters in region

A – C T G
G T C A -

A – - C T G
- G T C A -

𝜌!

𝜌#

𝑆	 = A C T G
𝑆′ = G T C A

Defined by max 𝑆 , 𝑆" $ hyperplanes

Gusfield et al., Algorithmica ‘94; Fernández-Baca et al., J. of Discrete Alg. ’04

Piecewise-constant utility function

Corollary:
Utility is piecewise constant function of parameters

𝑢 %,%! 𝝆

𝜌!

𝜌#

Distance between algorithm’s output and ground-truth alignment

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance

a. Example: Sequence alignment
b. Dual function definition

iii. Main result
iv. Applications

2. Online algorithm configuration

Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰	 = 𝑢𝝆: 𝒳 → ℝ	 𝝆 ∈ ℝ% “Primal” function class

Typically, prove guarantees by bounding complexity of 𝒰

Challenge: 𝒰 is gnarly

E.g., in sequence alignment:
• Each domain element is a pair of sequences
• Unclear how to plot or visualize functions 𝑢𝝆
• No obvious notions of Lipschitz continuity or smoothness to rely on

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰	 = 𝑢𝝆: 𝒳 → ℝ	 𝝆 ∈ ℝ% “Primal” function class

𝑢*∗ 𝝆 = utility as function of parameters
𝑢*∗ 𝝆 = 𝑢𝝆 𝑥
𝒰∗ = 𝑢*∗ : ℝ% → ℝ	 𝑥 ∈ 𝒳 “Dual” function class

• Dual functions have simple, Euclidean domain
• Often have ample structure can use to bound complexity of 𝒰

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Dual functions 𝑢*∗ : ℝ% → ℝ are piecewise-structured

Piecewise-structured functions

Clustering
algorithm

configuration

Integer
programming

algorithm
configuration

Selling
mechanism

configuration

Greedy
algorithm

configuration

Computational
biology

algorithm
configuration

Voting
mechanism

configuration

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Applications

2. Online algorithm configuration

Intrinsic complexity

“Intrinsic complexity” of function class 𝒢
• Measures how well functions in 𝒢 fit complex patterns
• Specific ways to quantify “intrinsic complexity”:

• VC dimension
• Pseudo-dimension

More complex Less complex

VC dimension

Complexity measure for binary-valued function classes ℱ
 (Classes of functions 𝑓:𝒴 → {−1,1})

E.g., linear separators

VC dimension

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Example: ℱ = Linear separators in ℝ" VCdim(ℱ) ≥ 3

VC dimension

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Example: ℱ = Linear separators in ℝ" VCdim(ℱ) ≥ 3

VCdim(ℱ) ≤ 3

VCdim({Linear separators in ℝ%}) = 𝑑 + 1

VC dimension

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Mathematically, for 𝒮 = 𝑦!, … , 𝑦' ,
𝑓 𝑦!
⋮

𝑓 𝑦'
: 𝑓 ∈ ℱ = 2'

Pseudo-dimension

Complexity measure for real-valued function classes 𝒢
 (Classes of functions 𝑔:𝒴 → [−1,1])

E.g., affine functions

Pseudo-dimension of 𝒢

Size of the largest set 𝑦!, … , 𝑦' ⊆ 𝒴 s.t.:
for some targets 𝑧!, … , 𝑧' ∈ ℝ,

all 2' above/below patterns achieved by functions in 𝒢

Example: 𝒢 = Affine functions in ℝ Pdim(𝒢) ≥ 2

𝑦! 𝑦#

𝑧!

𝑧#

𝑦! 𝑦#

𝑧!

𝑧#

𝑦! 𝑦#

𝑧!

𝑧#

𝑦! 𝑦#

𝑧!

𝑧#

Can also show that Pdim(𝒢) ≤ 2

Pseudo-dimension of 𝒢

Size of the largest set 𝑦!, … , 𝑦' ⊆ 𝒴 s.t.:
for some targets 𝑧!, … , 𝑧' ∈ ℝ,

all 2' above/below patterns achieved by functions in 𝒢

Mathematically,
𝟏 0 1! 23!

⋮
𝟏 0 1" 23"

: 𝑔 ∈ 𝒢 = 2'

Sample complexity using pseudo-dim

In the context of algorithm configuration:
• 𝒰 = 𝑢𝝆: 𝝆 ∈ ℝ% measure algorithm performance
• For 𝜖, 𝛿 ∈ 0,1 , let 𝑁 = 𝑂 4567 𝒰

9#
log !

:
• With probability at least 1 − 𝛿 over 𝑥!, … , 𝑥' ∼ 𝒟, ∀𝝆 ∈ ℝ%,

1
𝑁
7
()!

'

𝑢𝝆 𝑥(− 𝔼*~𝒟 𝑢𝝆 𝑥 ≤ 𝜖

Empirical average utility Expected utility

Main result (informal)

Boundary functions 𝑓!, … , 𝑓; ∈ ℱ partition ℝ% s.t. in each region,
𝑢*∗ 𝝆 = 𝑔(𝝆) for some 𝑔 ∈ 𝒢.

Training set of size Z𝑂 4567 𝒢∗ =>?567 ℱ∗ ABC ;
9#

 implies
WHP ∀𝝆, |avg utility over training set – exp utility|	≤ 𝜖

𝑓 ∈ ℱ

𝑔 ∈ 𝒢
𝑢'∗ 𝝆

𝜌!

𝜌#

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Main result (informal)

Boundary functions 𝑓!, … , 𝑓; ∈ ℱ partition ℝ% s.t. in each region,
𝑢*∗ 𝝆 = 𝑔(𝝆) for some 𝑔 ∈ 𝒢.

Theorem:
Pdim 𝒰 = Z𝑂 VCdim ℱ∗ + Pdim(𝒢∗) log 𝑘

Primal function class 𝒰 = 𝑢𝝆 	𝝆 ∈ ℝ*

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Each boundary function 𝑓:ℝ% → {−1,1} splits ℝ% into 2 regions

Key lemma

𝑓!(𝝆)

𝜌!

𝜌#

𝑓! 𝝆 = −1 𝑓! 𝝆 = 1

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Key lemma

Given 𝐷 boundaries, how many sign patterns do they make?
𝑓! 𝝆
⋮

𝑓D 𝝆
: 𝝆 ∈ ℝ% ≤ (𝑒𝐷)>?567 ℱ∗

Note: Sauer’s lemma tells us that for any 𝐷 points 𝝆!, … , 𝝆D ∈ ℝ%
𝑓 𝝆!
⋮

𝑓 𝝆D
: 𝑓 ∈ ℱ ≤ (𝑒𝐷)>?567 ℱ

This is where transitioning to the dual comes in handy!𝜌!
𝑓#(𝝆)

?
𝑓!(𝝆)

𝜌!

𝑓$(𝝆)

𝜌#

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Key lemma

Given 𝐷 boundaries, how many sign patterns do they make?
𝑓! 𝝆
⋮

𝑓D 𝝆
: 𝝆 ∈ ℝ% ≤ (𝑒𝐷)>?567 ℱ∗

Note: Sauer’s lemma tells us that for any 𝐷 points 𝝆!, … , 𝝆D ∈ ℝ%
𝑓 𝝆!
⋮

𝑓 𝝆D
: 𝑓 ∈ ℱ ≤ (𝑒𝐷)>?567 ℱ

This is where transitioning to the dual comes in handy!

?

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Key lemma

Given 𝐷 boundaries, how many sign patterns do they make?
𝑓! 𝝆
⋮

𝑓D 𝝆
: 𝝆 ∈ ℝ% ≤ (𝑒𝐷)>?567 ℱ∗

Note: Sauer’s lemma tells us that for any 𝐷 points 𝝆!, … , 𝝆D ∈ ℝ%
𝑓 𝝆!
⋮

𝑓 𝝆D
: 𝑓 ∈ ℱ ≤ (𝑒𝐷)>?567 ℱ

This is where transitioning to the dual comes in handy!
Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

sgn 𝑢*!
∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ ℝ% ≤ ?

Proof ideas

For any problem instances 𝑥!, … , 𝑥' and targets 𝑧!, … , 𝑧' ∈ ℝ,
sgn 𝑢𝝆 𝑥! − 𝑧!

⋮
sgn 𝑢𝝆 𝑥' − 𝑧'

: 𝝆 ∈ ℝ% ≤	?

Switching to the dual functions,

?

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Proof ideas

𝜌

𝑢'"
∗ (𝜌)

𝑧!

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

sgn 𝑢*!
∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ ℝ% ≤ ?

Proof ideas

sgn 𝑢*!
∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ ℝ% ≤	?

The duals 𝑢*!
∗ , … , 𝑢*"

∗ correspond to 𝑁𝑘 boundary functions in ℱ
How many regions 𝑅!, … , 𝑅E in ℝ%?

𝑓 ∈ ℱ

𝑔 ∈ 𝒢
𝑢'∗ 𝝆

sgn 𝑢*!
∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ ℝ% ≤ ?
𝑀 ≤ (𝑒𝑁𝑘)>?567 ℱ∗

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Proof ideas
sgn 𝑢*!

∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ 𝑅F ≤	?

∀𝝆 ∈ 𝑅F, duals are simultaneously structured: 𝑢*%
∗ 𝝆 = 𝑔(𝝆 , ∀𝑖

𝑓 ∈ ℱ

𝑔 ∈ 𝒢
𝑢'∗ 𝝆

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

sgn 𝑢*!
∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ ℝ% ≤ ?𝑹𝒋

Proof ideas
sgn 𝑢*!

∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ 𝑅F ≤	?

∀𝝆 ∈ 𝑅F, duals are simultaneously structured: 𝑢*%
∗ 𝝆 = 𝑔(𝝆 , ∀𝑖

sgn 𝑔! 𝝆 − 𝑧!
⋮

sgn 𝑔' 𝝆 − 𝑧'
: 𝝆 ∈ 𝑅F ≤	??

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

sgn 𝑢*!
∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ ℝ% ≤ ?𝑹𝒋

Proof ideas
sgn 𝑢*!

∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ 𝑅F ≤	?

∀𝝆 ∈ 𝑅F, duals are simultaneously structured: 𝑢*%
∗ 𝝆 = 𝑔(𝝆 , ∀𝑖

sgn 𝑔! 𝝆 − 𝑧!
⋮

sgn 𝑔' 𝝆 − 𝑧'
: 𝝆 ∈ 𝑅F ≤	?(𝑒𝑁)4567 𝒢∗

Follows from key lemma

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

sgn 𝑢*!
∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ ℝ% ≤ ?𝑹𝒋

Proof ideas
sgn 𝑢*!

∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ ℝ% ≤	?

≤ 𝑒𝑁𝑘 >?567 ℱ∗ 𝑒𝑁 4567 𝒢∗ 	

Pdim 𝒰 equals largest 𝑁 s.t. 2H ≤ (𝑒𝑁𝑘)>?567 ℱ∗ (𝑒𝑁)4567 𝒢∗ ,
so Pdim 𝒰 = Z𝑂 VCdim ℱ∗ + Pdim(𝒢∗) log 𝑘

Number of regions Number of sign patterns within each region

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

sgn 𝑢*!
∗ 𝝆 − 𝑧!
⋮

sgn 𝑢*"
∗ 𝝆 − 𝑧'

: 𝝆 ∈ ℝ% ≤

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Applications

a. Sequence alignment
b. Greedy algorithms
c. Cutting planes

2. Online algorithm configuration

Piecewise constant dual functions

Lemma:
Utility is piecewise constant function of parameters

𝜌!

𝜌#

𝑢(%,%!)
∗ 𝝆

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Sequence alignment guarantees

Theorem: Training set of size
Z𝑂
Pdim 𝒢∗ + VCdim ℱ∗ log 𝑘

𝜖"
= Z𝑂

log(max	seq. 	length)
𝜖"

𝜌!

𝜌#

𝑢(%,%!)
∗ 𝝆

implies WHP ∀𝝆, |avg utility over training set – exp utility|	≤ 𝜖

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Sequence alignment guarantees

Theorem: Training set of size
Z𝑂
Pdim 𝒢∗ + VCdim ℱ∗ log 𝑘

𝜖"
= Z𝑂

log(max	seq. 	length)
𝜖"

𝜌!

𝜌#

𝑢(%,%!)
∗ 𝝆

ℱ = hyperplanes in ℝ$
VCdim ℱ∗ = 𝑂(1)

𝒢 = constant
functions in ℝ$

Pdim 𝒢∗ = 𝑂(1)

max	sequence	length $

implies WHP ∀𝝆, |avg utility over training set – exp utility|	≤ 𝜖

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Applications

a. Sequence alignment
b. Greedy algorithms
c. Cutting planes

2. Online algorithm configuration

Example: MWIS

Maximum weight independent set (MWIS)

Problem instance:
• Graph 𝐺 = (𝑉, 𝐸)
• 𝑛 vertices with weights 𝑤J, … , 𝑤K ≥ 0

Goal: find subset 𝑆 ⊆ [𝑛]
• Maximizing ∑L∈M𝑤L
• No nodes 𝑖, 𝑗 ∈ 𝑆 are connected: 𝑖, 𝑗 ∉ 𝐸

Example: MWIS

Greedy heuristic:
Greedily add vertices 𝑣 in decreasing order of I&

!=5JC K
Maintaining independence

Parameterized heuristic [Gupta, Roughgarden, ITCS’16]:
Greedily add nodes in decreasing order of I&

!=5JC K ', 𝜌 ≥ 0
[Inspired by knapsack heuristic by Lehmann et al., JACM’02]

Gupta, Roughgarden, ITCS’16

Example: MWIS

Given a MWIS instance 𝑥, 𝑢*∗ 𝜌 = weight of IS algorithm returns

Theorem [Gupta, Roughgarden, ITCS’16]:
𝑢*∗ 𝜌 is piecewise-constant with at most 𝑛" pieces

Gupta, Roughgarden, ITCS’16

Example: MWIS

Given a MWIS instance 𝑥, 𝑢*∗ 𝜌 = weight of IS algorithm returns
• Weights 𝑤J, … , 𝑤K ≥ 0
• deg 𝑖 + 1 = 𝑘L

Algorithm parameterized by 𝜌 would add node 1 before 2 if:
𝑤!
𝑘!
L ≥

𝑤"
𝑘"
L . 	 ⟺. 𝜌 ≥ log;#

;!

𝑤"
𝑤!

log-#
-"

𝑤#
𝑤!

𝜌
Heuristic prioritizes node 2 Heuristic prioritizes node 1

Gupta, Roughgarden, ITCS’16

Example: MWIS

• 𝑛
2 thresholds per instance

• Partition ℝ into regions where algorithm’s output is fixed

log-#
-"

𝑤#
𝑤!

𝜌

log-$
-#

𝑤$
𝑤#

log-$
-"

𝑤$
𝑤!

log-%
-&

𝑤.
𝑤/

Algorithm will add exact same
nodes no matter which 𝜌 it uses

Gupta, Roughgarden, ITCS’16

Example: MWIS

• 𝑛
2 thresholds per instance

• Partition ℝ into regions where algorithm’s output is fixed
 ⇒ 𝑢*∗(𝜌) is constant

𝜌

𝑢'∗(𝜌)

log-#
-"

𝑤#
𝑤!

log-$
-#

𝑤$
𝑤#

log-$
-"

𝑤$
𝑤!

log-%
-&

𝑤.
𝑤/

Gupta, Roughgarden, ITCS’16

MWIS guarantees

Theorem: Training set of size
Z𝑂
Pdim 𝒢∗ + VCdim ℱ∗ log 𝑘

𝜖"
= Z𝑂

log 𝑛
𝜖"

implies WHP ∀𝜌, |avg utility over training set – exp utility|	≤ 𝜖

Gupta, Roughgarden, ITCS’16; Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

MWIS guarantees

Theorem: Training set of size
Z𝑂
Pdim 𝒢∗ + VCdim ℱ∗ log 𝑘

𝜖"
= Z𝑂

log 𝑛
𝜖"

ℱ = thresholds
VCdim ℱ∗ = 𝑂(1)

𝒢 = constant functions
Pdim 𝒢∗ = 𝑂(1)

𝑛#

implies WHP ∀𝜌, |avg utility over training set – exp utility|	≤ 𝜖

Gupta, Roughgarden, ITCS’16; Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
i. Model
ii. Piecewise-structured algorithmic performance
iii. Main result
iv. Applications

a. Sequence alignment
b. Greedy algorithms
c. Cutting planes

2. Online algorithm configuration

max (40, 60, 10, 10, 3, 20, 60) V 𝒛
s.t. 40, 50, 30, 10, 10, 40, 30 V 𝒛 ≤ 100
 𝒛 ∈ {0,1}0

𝒛 = !
#
, 1, 0, 0, 0, 0, 1

140

1, $
1
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0, !
2
, 1

135

1, 0, 0, 1, 0, !
#
, 1

120

1, 1, 0, 0, 0, 0, !
$

120

0, $
1
, 0, 0, 0, 1, 1

116

0, 1, !
$
, 1, 0, 0, 1

133.3

𝑧! = 0 𝑧! = 1

𝑧3 = 0 𝑧3 = 1 𝑧# = 0 𝑧# = 1

𝑧$ = 0 𝑧$ = 1

0, 2
1
, 1, 0, 0, 0, 1

118

0, 1, 0, 1, 1, 0, 1

133

Prune node if:
won’t find better solution along branch

Branch
and

bound
(B&B)

Cutting planes

Additional constraints that:
• Separate the LP optimal solution
• Tightens LP relaxation to prune nodes sooner

• Don’t separate any integer point

LP optimal solution
Invalid

Cutting planes
Modern IP solvers add cutting planes through the B&B tree

“Branch-and-cut”

Responsible for breakthrough speedups of IP solvers
Cornuéjols, Annals of OR ’07

Challenges:
• Many different types of cutting planes
• Chvátal-Gomory cuts, cover cuts, clique cuts, …

• How to choose which cuts to apply?

Chvátal-Gomory cuts

We study the canonical family of Chvátal-Gomory (CG) cuts

CG cut parameterized by 𝝆	 ∈ [0,1)M is 𝝆N𝐴 𝒛 ≤ ⌊𝝆N𝒃⌋

Important properties:
• CG cuts are valid
• Can be chosen so it separates the LP opt

Balcan, Prasad, Sandholm, Vitercik, NeurIPS’21

Key challenge

Cut (typically) remains in LPs throughout entire tree search

Every aspect of tree search depends on LP guidance
Node selection, variable selection, pruning, …

Tiny change in cut can cause major changes to tree

Balcan, Prasad, Sandholm, Vitercik, NeurIPS’21

Tree size is a piecewise-constant function of 𝝆 ∈ [0,1)M

Key lemma

Tree size

𝜌[1]

𝜌[2]

Balcan, Sandholm, Prasad, Vitercik, NeurIPS’21

Lemma: 𝑂 𝐴 J,J + 𝒃 J + 𝑛 hyperplanes partition 0,1 `	into regions
s.t. in any one region, B&C tree is fixed

Key lemma

Proof idea:
• CG cut parameterized by 𝝆 ∈ [0,1)M is 𝝆N𝐴 𝒛 ≤ ⌊𝝆N𝒃⌋
• For any 𝝆 and column 𝒂(, 𝝆N𝒂(∈ [− 𝒂(!, 𝒂(!]
• For each integer 𝑘(∈ − 𝒂(!, 𝒂(! :

𝝆N𝒂(= 𝑘(iff 𝑘(≤ 𝝆N𝒂(< 𝑘(+ 1
• In any region defined by intersection of halfspaces:

𝝆!𝒂" , … , 𝝆!𝒂# is constant

Lemma:

𝑂 𝐴 !,! + 𝑛
halfspaces

Balcan, Sandholm, Prasad, Vitercik, NeurIPS’21

𝑂 𝐴 J,J + 𝒃 J + 𝑛 hyperplanes partition 0,1 `	into regions
s.t. in any one region, B&C tree is fixed

Beyond Chvátal-Gomory cuts

Balcan, Sandholm, Prasad, Vitercik, NeurIPS’22

For more complex families, boundaries can be more complex

𝜌[1]

𝜌[2]

Cutting plane guarantees

Theorem: Training set of size
Z𝑂
Pdim 𝒢∗ + VCdim ℱ∗ log 𝑘

𝜖"
= Z𝑂

𝑚 log 𝐴 !,! + 𝒃 ! + 𝑛
𝜖"

implies WHP ∀𝝆, |avg utility over training set – exp utility|	≤ 𝜖

Balcan, Prasad, Sandholm, Vitercik, NeurIPS’21; Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Cutting plane guarantees

Theorem: Training set of size
Z𝑂
Pdim 𝒢∗ + VCdim ℱ∗ log 𝑘

𝜖"
= Z𝑂

𝑚 log 𝐴 !,! + 𝒃 ! + 𝑛
𝜖"

implies WHP ∀𝝆, |avg utility over training set – exp utility|	≤ 𝜖

ℱ = hyperplanes in ℝ4
VCdim ℱ∗ = 𝑂(𝑚)

𝒢 = constant functions in ℝ4
Pdim 𝒢∗ = 𝑂(𝑚)

𝐴 !,! + 𝒃 ! + 𝑛

Balcan, Prasad, Sandholm, Vitercik, NeurIPS’21; Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration

Gupta, Roughgarden, ITCS’16
Balcan, Dick, Vitercik, FOCS’18

Balcan, Dick, Pegden, UAI’20

Day 1: 𝜌! Day 2: 𝜌# Day 3: 𝜌$

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?
E.g., MWIS:

Goal: Compete with best parameter setting in hindsight
• Impossible in the worst case
• Under what conditions is online configuration possible?

Online model
Over 𝑇 timesteps 𝑡 = 1,… , 𝑇:

1. Learner chooses parameter setting 𝝆P
2. Nature (or adversary 😈) chooses problem instance 𝑥P
3. Learner obtains reward 𝑢𝝆(𝑥P = 𝑢*(

∗ 𝝆P
4. Learner observes function 𝑢*(

∗ (full information feedback)
• Simplest setting so we’ll start here
• Will look at other feedback models later (e.g., bandit)

Online model
Over 𝑇 timesteps 𝑡 = 1,… , 𝑇:

1. Learner chooses parameter setting 𝝆P
2. Nature (or adversary 😈) chooses problem instance 𝑥P
3. Learner obtains reward 𝑢𝝆(𝑥P = 𝑢*(

∗ 𝝆P
4. Learner observes function 𝑢*(

∗ (full information feedback)

Goal: Minimize regret max
𝝆
∑P)!N 𝑢𝝆 𝑥P − ∑P)!N 𝑢𝝆(𝑥P

Ideally, !
N
⋅	(Regret) → 0 as 𝑇 → ∞

On average, competing with best algorithm in hindsight

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration

i. Worst-case instance
ii. Dispersion
iii. Semi-bandit model

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Dual function: Utility on instance 𝑥! as function of 𝜌

Gupta and Roughgarden, ITCS’16

Round 1:

𝜌

𝜌

𝑢'"
∗ 𝜌

𝑢'"!
∗ 𝜌 Dual function: Utility on instance 𝑥!$ as function of 𝜌

1

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Adversary chooses 𝑥!	or 𝑥!$ with equal probability

Gupta and Roughgarden, ITCS’16

Round 1:

𝜌

𝜌

1

𝑢'"
∗ 𝜌

𝑢'"!
∗ 𝜌

Gupta and Roughgarden, ITCS’16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1:

𝜌

𝜌

Round 2:

𝑢'#
∗ 𝜌

𝑢'#!
∗ 𝜌≈≈

1

𝑢'"
∗ 𝜌

𝑢'"!
∗ 𝜌

Round 1:
Repeatedly halves optimal region

Gupta and Roughgarden, ITCS’16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

𝜌

𝜌

Round 2:

𝜌

𝜌

≈≈

1

𝑢'#
∗ 𝜌

𝑢'#!
∗ 𝜌

𝑢'"
∗ 𝜌

𝑢'"!
∗ 𝜌

Round 1:
Repeatedly halves optimal region

Gupta and Roughgarden, ITCS’16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

𝜌

𝜌

Round 2:

𝜌

𝜌

≈≈

1

𝑢'#
∗ 𝜌

𝑢'#!
∗ 𝜌

𝑢'"
∗ 𝜌

𝑢'"!
∗ 𝜌

Round 1:

Learner’s expected reward: N
"

Reward of best 𝜌 in hindsight: 𝑇
Expected regret = N

"

Repeatedly halves optimal region

Gupta and Roughgarden, ITCS’16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

𝜌

𝜌

Round 2:

𝜌

𝜌

≈≈

1

𝑢'#
∗ 𝜌

𝑢'#!
∗ 𝜌

𝑢'"
∗ 𝜌

𝑢'"!
∗ 𝜌

Smoothed adversary: MWIS

Sub-linear regret is possible if adversary has a “shaky hand”:
• Node weights 𝑤!, … , 𝑤Q	and degrees 𝑘!, … , 𝑘Q are stochastic
• Joint density of 𝑤(, 𝑤F , 𝑘(, 𝑘F is bounded

Later generalized by Cohen-Addad, Kanade [AISTATS, ’17];
Balcan, Dick, Vitercik [FOCS’18]; Balcan et al. [UAI’20]; …

Density
of 𝑤.

Density
of 𝑤.

Gupta and Roughgarden, ITCS’16

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration

i. Worst-case instance
ii. Dispersion
iii. Semi-bandit model

Dispersion

Mean adversary concentrates discontinuities near maximizer 𝜌∗
Even points very close to 𝜌∗ have low utility!

𝑢*!
∗ , … , 𝑢*)

∗ : 𝐵 𝟎, 1 → −1,1 are 𝒘, 𝒌 -dispersed at point 𝝆 if:
Can be generalized to any bounded subset

Balcan, Dick, Vitercik, FOCS’18

Dispersion

Mean adversary concentrates discontinuities near maximizer 𝜌∗
Even points very close to 𝜌∗ have low utility!

𝑢*!
∗ , … , 𝑢*)

∗ : 𝐵 𝟎, 1 → −1,1 are 𝒘, 𝒌 -dispersed at point 𝝆 if:
ℓ"-ball 𝐵 𝝆,𝑤 contains discontinuities for ≤ 𝑘 of 𝑢*!

∗ , … , 𝑢*)
∗

𝝆
𝑤

Ball of radius 𝑤 about 𝝆 contains 2 discontinuities
⇒ (𝑤, 2)-dispersed at 𝝆

Balcan, Dick, Vitercik, FOCS’18

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration

i. Worst-case instance
ii. Dispersion

a. Algorithm
b. Regret bound
c. Bandit feedback
d. Proving dispersion holds

iii. Semi-bandit model

Exponentially weighted forecaster
[Freund, Schapire, JCSS’97, Cesa-Bianchi & Lugosi ’06, …]

input: Learning rate 𝜂 > 0
initialization: 𝑈R 𝝆 = 0 is the constant function
for 𝑡 = 1,… , 𝑇:

choose distribution 𝒒d over ℝe such that 𝒒d 𝝆 ∝ exp 𝜂𝑈dfJ 𝝆

choose parameter setting 𝝆d ∼ 𝒒d, receive reward 𝑢g!
∗ 𝝆d

observe utility function 𝑢g!
∗ : 𝐵 𝟎, 1 → [0,1]

update 𝑈d = 𝑈dfJ + 𝑢g!
∗

Exponentially upweight high-performance parameter settings

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration

i. Worst-case instance
ii. Dispersion

a. Algorithm
b. Regret bound
c. Bandit feedback
d. Proving dispersion holds

iii. Semi-bandit model

Regret

Regret = ∑P)!N 𝑢*(
∗ 𝝆∗ − ∑P)!N 𝑢*(

∗ 𝝆P

Theorem: Suppse 𝑢*!
∗ , … , 𝑢*)

∗ : 𝐵 𝟎, 1 → 0,1 	are:
1. Piecewise 𝐿-Lipschitz
2. (𝑤, 𝑘)-dispersed at 𝝆∗

EWF has regret 𝑂 𝑇𝑑 log !
I
+ 𝑇𝐿𝑤 + 𝑘

When is this a good bound?
For 𝑤 = !

S N
 and 𝑘 = Z𝑂 𝑇 , regret is Z𝑂 𝑇𝑑	

Balcan, Dick, Vitercik, FOCS’18

Regret upper bound: Proof sketch

𝑊P = �
T 𝟎,!

exp 𝜂𝑈P 𝝆 𝑑𝝆 𝑈5 𝝆 =j
67!

5

𝑢6∗ 𝝆

Learner’s performance (ALG) is sufficiently large compared to OPT

Something in terms
of ALG = ∑P)!N 𝑢P∗ 𝝆P

Something in terms
of OPT = ∑P)!N 𝑢P∗ 𝝆∗

≤
𝑊N

𝑊R
≤Goal:

Balcan, Dick, Vitercik, FOCS’18

Regret upper bound: Proof sketch

𝑊P = �
T 𝟎,!

exp 𝜂𝑈P 𝝆 𝑑𝝆 𝑈5 𝝆 =j
67!

5

𝑢6∗ 𝝆

Standard
EWF analysis

Something in terms
of OPT = ∑P)!N 𝑢P∗ 𝝆∗

≤
𝑊N

𝑊R
≤Goal: exp ALG 𝑒V − 1

Balcan, Dick, Vitercik, FOCS’18

Regret upper bound: Proof sketch

𝑊P = �
T 𝟎,!

exp 𝜂𝑈P 𝝆 𝑑𝝆 𝑈5 𝝆 =j
67!

5

𝑢6∗ 𝝆

Something in terms
of OPT = ∑P)!N 𝑢P∗ 𝝆∗

≤
𝑊N

𝑊R
≤Goal: exp ALG 𝑒V − 1

𝑊N = �
T 𝟎,!

exp 𝜂7
P)!

N

𝑢P∗ 𝝆 𝑑𝝆 ≥ �
T 𝝆∗,I

exp 𝜂7
P)!

N

𝑢P∗ 𝝆 𝑑𝝆

Balcan, Dick, Vitercik, FOCS’18

Regret upper bound: Proof sketch

Something in terms
of OPT = ∑P)!N 𝑢P∗ 𝝆∗

≤
𝑊N

𝑊R
≤Goal: exp ALG 𝑒V − 1

𝑊N = �
T 𝟎,!

exp 𝜂7
P)!

N

𝑢P∗ 𝝆 𝑑𝝆 ≥ �
T 𝝆∗,I

exp 𝜂7
P)!

N

𝑢P∗ 𝝆 𝑑𝝆

≥ �
T 𝝆∗,I

exp 𝜂 OPT − 𝑘 − 𝑇𝐿𝑤 𝑑𝝆	

= Vol 𝐵 𝝆∗, 𝑤 exp 𝜂 OPT − 𝑘 − 𝑇𝐿𝑤 	

Balcan, Dick, Vitercik, FOCS’18

𝑊N = �
T 𝟎,!

exp 𝜂7
P)!

N

𝑢P∗ 𝝆 𝑑𝝆 ≥ �
T 𝝆∗,I

exp 𝜂7
P)!

N

𝑢P∗ 𝝆 𝑑𝝆

Vol 𝐵 𝝆∗, 𝑤 exp 𝜂 OPT − 𝑘 − 𝑇𝐿𝑤

Regret upper bound: Proof sketch

≤
𝑊N

𝑊R
≤ exp ALG 𝑒V − 1

Rearranging and setting 𝜂 = %
N
log !

I
:

Regret = OPT − ALG = 𝑂 𝑇𝑑 log !
I
+ 𝑇𝐿𝑤 + 𝑘

Vol 𝐵 𝝆∗, 𝑤 exp 𝜂 OPT − 𝑘 − 𝑇𝐿𝑤
Vol 𝐵 𝟎, 1

Balcan, Dick, Vitercik, FOCS’18

Vol 𝐵 𝝆∗, 𝑤 exp 𝜂 OPT − 𝑘 − 𝑇𝐿𝑤

Matching lower bound

Theorem: For any algorithm, exist PW-constant 𝑢!∗ , … , 𝑢N∗ s.t.:

Algorithm’s regret is Ω inf
(I,;)

𝑇𝑑 log !
I
+ 𝑘

Inf over all (𝑤, 𝑘)-dispersion parameters that 𝑢J∗, … , 𝑢p∗ satisfy at 𝝆∗

Upper bound = 𝑂 inf
(I,;)

𝑇𝑑 log !
I
+ 𝑘

Balcan, Dick, Vitercik, FOCS’18

Regret lower bound: Proof sketch

Lemma [Weed et al., COLT’16]:
Exist distributions 𝜇Y , 𝜇S over 𝑢 R , 𝑢 ! s.t. for any algorithm,

max
Z*,Z+

max
L∈ R,!

𝔼 7
P)!

N

𝑢P∗ 𝜌 −7
P)!

N

𝑢P∗ 𝜌P ≥
𝑇
32

Any 𝜌 > 0.5 is optimal under 𝜇q, any 𝜌 ≤ 0.5 is optimal under 𝜇r

𝜌 𝜌
0.5
1

𝑢 8 𝜌 𝑢 ! 𝜌

0.5
1

0.5 0.5

𝑢!∗ , … , 𝑢9∗ drawn from worse of 𝜇: , 𝜇;

Regret lower bound: Proof sketch

Lemma [Weed et al., COLT’16]:
Exist distributions 𝜇Y , 𝜇S over 𝑢 R , 𝑢 ! s.t. for any algorithm,

max
Z*,Z+

max
L∈ R,!

𝔼 7
P)!

N

𝑢P∗ 𝜌 −7
P)!

N

𝑢P∗ 𝜌P ≥
𝑇
32

Any 𝜌 > 0.5 is optimal under 𝜇q, any 𝜌 ≤ 0.5 is optimal under 𝜇r

𝜌 𝜌
0.5
1

𝑢 8 𝜌 𝑢 ! 𝜌

0.5
1

0.5 0.5

Regret lower bound: Proof sketch

Worst case instance:
1. Draw 𝑢!∗ , … , 𝑢N\ N

∗ from worse of 𝜇Y , 𝜇S and define:

𝜌∗ = argmax
L∈ !

],
#
]

7
P)!

N\ N

𝑢P∗ 𝜌

2. Define 𝑢P∗ 𝜌 = 𝟏 L\L∗ ^ !
!,

 for 𝑡 > 𝑇 − 𝑇

Note: 𝜌∗ ∈ argmax∑P)!N 𝑢P∗ 𝜌

𝑢5∗ 𝜌

𝜌
!
2

1

Balcan, Dick, Vitercik, FOCS’18

Regret lower bound: Proof sketch

Analysis:

• Regret ≥ N
_]

 (follows from lemma by Weed et al., [COLT’16])

• Lower bound follows from fact that N
_]
= Ω inf

(I,;)
𝑇 log !

I
+ 𝑘

Only last 𝑘 = 𝑇 functions have discontinuities in
𝜌∗ −

1
8
, 𝜌∗ +

1
8

⇒ 𝑢J∗, … , 𝑢p∗ are 𝑤 = J
u , 𝑘 = 𝑇 -dispersed around 𝜌∗

𝜌
!
2

1

Balcan, Dick, Vitercik, FOCS’18

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration

i. Worst-case instance
ii. Dispersion

a. Algorithm
b. Regret bound
c. Bandit feedback
d. Proving dispersion holds

iii. Semi-bandit model

Bandit feedback

Over 𝑇 timesteps 𝑡 = 1,… , 𝑇:
1. Learner chooses parameter setting 𝝆P
2. Nature (or adversary 😈) chooses problem instance 𝑥P
3. Learner obtains reward 𝑢𝝆(𝑥P = 𝑢*(

∗ 𝝆P
4. Learner only observes 𝑢*(

∗ 𝝆P (not entire function)

Bandit feedback
Theorem: If 𝑢!∗ , … , 𝑢N∗ : 𝐵(𝟎, 1) → 0,1 are:

1. Piecewise 𝐿-Lipschitz
2. (𝑤, 𝑘)-dispersed at 𝝆∗

The UCB algorithm has regret Z𝑂 𝑇𝑑 !
I

%
+ 𝑇𝐿𝑤 + 𝑘

• If 𝑑 = 1, 𝑤 = !
- N

, and 𝑘 = Z𝑂 𝑇"/# , regret is Z𝑂 𝐿𝑇"/#

• If 𝑤 = 𝑇
./!
./#\!, 𝑘 = Z𝑂 𝑇

./!

./# , then regret is Z𝑂 𝑇
./!
./# 𝑑3% + 𝐿

Balcan, Dick, Vitercik, FOCS’18

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration

i. Worst-case instance
ii. Dispersion

a. Algorithm
b. Regret bound
c. Bandit feedback
d. Proving dispersion holds

iii. Semi-bandit model

Smooth adversaries and dispersion

Adversary chooses thresholds 𝑢P∗: 0,1 → 0,1
Discontinuity 𝜏 “smoothed” by adding 𝑍~𝑁(0, 𝜎")

Lemma: WHP, ∀𝑤, 𝑢!∗ , … , 𝑢N∗ are 𝑤, Z𝑂 NI
a
+ 𝑇 -dispersed

Corollary: 𝑤 = a
N
 ⇒ Full information regret = 𝑶 𝑻 𝐥𝐨𝐠 𝑻

𝝈

𝜏 + 𝑍 1𝜏0

Balcan, Dick, Vitercik, FOCS’18

Simple example: knapsack

Problem instance:
• 𝑛 items, item 𝑖 has value 𝑣(and size 𝑠(
• Knapsack with capacity 𝐾

Goal: find most valuable items that fit

Algorithm (parameterized by 𝜌 ≥ 0):
Add items in decreasing order of K%

d%
'

[Gupta and Roughgarden, ITCS‘16]

Dispersion for knapsack

Theorem: If instances randomly distributed s.t. on each round:
1. Each 𝑣(independent from 𝑠(
2. All 𝑣(, 𝑣F have joint density functions with range ⊆ 0, 𝜅 ,

W.h.p., for any 𝛼 ≥ !
"
, 𝑢!∗ , … , 𝑢N∗ are

Z𝑂 N!01

e
, Z𝑂 (#	items)"𝑇f -dispersed

Corollary: Full information regret = Z𝑂 (#	items)" 𝑇

Balcan, Dick, Vitercik, FOCS’18

More results for algorithm configuration

Under no assumptions, we show dispersion for
Integer quadratic programming approximation algs

Based on semi-definite programming relaxations
• 𝑠-linear rounding [Feige & Langberg ‘06]
• Outward rotations [Zwick ‘99]

• Both generalizations of Goemans-Williamson max-cut alg [‘95]

Leverage algorithm’s randomness to prove dispersion

Balcan, Dick, Vitercik, FOCS’18

Outline (theoretical guarantees)

1. Statistical guarantees for algorithm configuration
2. Online algorithm configuration

i. Worst-case instance
ii. Dispersion
iii. Semi-bandit model

Semi-bandit model

• Computing the entire function 𝑢P∗ 𝜌 can be challenging
• Often, it’s easy to compute interval in which 𝑢P∗ 𝜌P is constant
• E.g., in IP, simple bookkeeping with CPLEX callbacks

• Semi-bandit model: learner learns 𝑢P∗ 𝜌P and interval

Balcan, Dick, Pegden [UAI’20]:
• Regret bounds that are nearly as good as full info
• Introduce a more general definition of dispersion

𝑢5∗ 𝜌

𝜌
𝜌5

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs

Different types of tasks

Graph-level prediction

Node level

Community (subgraph) level

Edge level

Figure by Leskovec

Prediction with graphs: Examples

Graph-level tasks:
E.g., for a molecule represented as a graph, could predict:
• What the molecule smells like
• Whether it will bind to a receptor implicated in a disease

Figure by Sanchez-Lengeling et al. [’21]

Prediction with graphs: Examples

Node-level tasks:
E.g., political affiliations of users in a social network

Figure by Sanchez-Lengeling et al. [’21]

Prediction with graphs: Examples

Edge-level tasks: E.g.:
• Suggesting new friends
• Recommendations on Amazon, Netflix, …

Figure by Ahmad et al. [’20]

GNN motivation

Main question:
How to utilize relational structure for better prediction?

Graph neural networks: First step

• Design features for nodes/links/graphs
• Obtain features for all training data

Figure by Leskovec

Graph neural networks: Objective

Idea:
1. Encode each node and its neighborhood with embedding
2. Aggregate set of node embeddings into graph embedding
3. Use embeddings to make predictions

Figure by Jegelka

Predict user is
Republican

Predict user is
Democrat

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

Encoding neighborhoods: General form

𝒉g
R = 𝒙g (feature representation for node 𝑢)

In each round 𝑘 ∈ 𝐾 , for each node 𝑣:
1. Aggregate over neighbors

𝒎x y
z = AGGREGATE z 𝒉{

zfJ : 𝑢 ∈ 𝑁 𝑣

Neighborhood of 𝑣

Encoding neighborhoods: General form

𝒉g
R = 𝒙g (feature representation for node 𝑢)

In each round 𝑘 ∈ 𝐾 , for each node 𝑣:
1. Aggregate over neighbors

𝒎x y
z = AGGREGATE z 𝒉{

zfJ : 𝑢 ∈ 𝑁 𝑣
2. Update current node representation

𝒉y
z = COMBINE z 𝒉y

zfJ ,𝒎x y
z

Figure by Jegelka

The basic GNN
[Merkwirth and Lengauer ‘05; Scarselli et al. ‘09]

𝒎' K = AGGREGATE 𝒉g: 𝑢 ∈ 𝑁 𝑣 = 7
g∈'(K)

𝒉g

COMBINE 𝒉K ,𝒎'(K) = 𝜎 𝑊hJAi𝒉K +𝑊jJ6Ck𝒎' K + 𝒃

Trainable parameters

Non-linearity (e.g.,
tanh or ReLU)

Figure by Jegelka

Aggregation functions

𝒎' K = AGGREGATE 𝒉g: 𝑢 ∈ 𝑁 𝑣 = 7
g∈'(K)

𝒉g

Figure by Jegelka

®
g∈'(K)

𝒉g

Other element-wise aggregators, e.g.:
Maximization, averaging

Node embeddings unrolled

Figures by Leskovec

Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Grey boxes: aggregation functions that we learn
Figures by Leskovec

Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Figures by Leskovec

Weight sharing

Use the same aggregation functions for all nodes

Can generate encodings for
previously unseen nodes & graphs!

Figures by Leskovec

Training a GNN
• What is a data point?

• What to specify?
• Aggregate and combine functions
• Readout function: combines node embeddings → graph embedding
• Loss function on prediction

• Train with SGD

Node and its
neighborhood Entire graph

Slide by Jegelka

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20
Cappart, Chételat, Khalil, Lodi, Morris, Veličković, arXiv’21

Problem-solving approaches

+ Operate on raw inputs
+ Generalize on noisy conditions
+ Models reusable across tasks
- Require big data
- Unreliable when extrapolating
- Lack of interpretability

+ Trivially strong generalization
+ Compositional (subroutines)
+ Guaranteed correctness
+ Interpretable operations
- Input must match spec
- Not robust to task variations

Slide by Veličković

Is it possible to get the best of both worlds?

Previous work

Previous work:
• Shortest path [Graves et al. ‘16; Xu et al., ‘19]
• Traveling salesman [Reed and De Freitas ‘15]
• Boolean satisfiability [Vinyals et al. ‘15; Bello et al., ‘16; …]
• Probabilistic inference [Yoon et al., ‘18]

Ground-truth solutions used to drive learning
Model has complete freedom mapping raw inputs to solutions

Neural graph algorithm execution

Key observation: Many algorithms share related subroutines
E.g. Bellman-Ford, BFS enumerate sets of edges adjacent to a node

Neural graph algorithm execution
• Learn several algorithms simultaneously
• Provide intermediate supervision signals

Driven by how a known classical algorithm would process the input

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment

i. Example algorithms
ii. Experiments
iii. Additional motivation
iv. Additional research

3. Integer programming with GNNs

Breadth-first search

• Source node 𝑠

• Initial input 𝑥(
(!) = ¯1 if	𝑖 = 𝑠	

0 if	𝑖	 ≠ 𝑠
• Node is reachable from 𝑠 if any of its neighbors are reachable:

𝑥(
(P=!) =

1 if	𝑥(
(P) = 1.	

1 if	∃𝑗	s. t. 𝑗, 𝑖 ∈ 𝐸	and	𝑥F
P = 1

0 else	

• Algorithm output at round 𝑡: 𝑦(
(P) = 𝑥(

P=!

Bellman-Ford (shortest path)

• Source node 𝑠

• Initial input 𝑥(
(!) = ¯ 0 if	𝑖 = 𝑠	

∞ if	𝑖	 ≠ 𝑠	
• Node is reachable from 𝑠 if any of its neighbors are reachable

Update distance to node as minimal way to reach neighbors
𝑥(
(P=!) = min 𝑥(

P , min
F,(∈l

𝑥F
P + 𝑒F(

P

Bellman-Ford: Message passing

Key idea (roughly speaking): Train GNN so that 𝒉g
P ≈ 𝑥g

(P), ∀𝑡
(Really, so that a function of 𝒉<

5 ≈ 𝑥<
(5))

𝑥<
(5)

𝑥-
(5)

𝑥/
(5)

𝑥.
(5) min 𝑥<

5 , min 𝑥=
5 + 𝑒=<

𝑥-
5 + 𝑒-<

5
𝑥/
5 + 𝑒/<

5

𝑥.
5 + 𝑒.<

5

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment

i. Example algorithms
ii. Experiments
iii. Additional motivation
iv. Additional research

3. Integer programming with GNNs

Shortest-path predecessor prediction

Improvement of max-aggregator increases with size
It aligns better with underlying algorithm [Xu et al., ICLR’20]

0

0.2

0.4

0.6

0.8

1

20 nodes 50 nodes 100 nodes

Ac
cu

ra
cy Mean aggregator

Sum aggregator
Max aggregator

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20

Learning multiple algorithms

Learn to execute both BFS and Bellman-Ford simultaneously
• At each step 𝑡, concatenate relevant 𝑥L

(d) and 𝒚L
(d) values

Comparisons
• (no-reach): Learn Bellman-Ford alone
• Doesn’t simultaneously learn reachability

• (no-algo):
• Don’t supervise intermediate steps
• Learn predecessors directly from input 𝑥L

(J)

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20

Shortest-path predecessor prediction

0

0.2

0.4

0.6

0.8

1

20 nodes 50 nodes 100 nodes

Ac
cu

ra
cy Max aggregator

Max aggregator (no-reach)
Max aggregator (no-algo)

• (no-reach) results: positive knowledge transfer
• (no-algo) results: benefit of supervising intermediate steps

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment

i. Example algorithms
ii. Experiments
iii. Additional motivation
iv. Additional research

3. Integer programming with GNNs

Key question

Key question in neural algorithmic alignment:

If we’re just teaching a NN to imitate a classical algorithm…
Why not just run that algorithm?

Why use GNNs for algorithm design?

Classical algorithms are designed with abstraction in mind
Enforce their inputs to conform to stringent preconditions

However, we design algorithms to solve real-world problems!

Slide by Veličković

Natural inputs

Abstractifying the core problem

• Assume we have real-world inputs
…but algorithm only admits abstract inputs

• Could try manually converting from one input to another

👩💻

Slide by Veličković

Natural inputs Abstract inputs Abstract outputs

Attacking the core problem

• Alternatively, replace human feature extractor with NN
• Still apply same combinatorial algorithm

• Issue: algorithms typically perform discrete optimization
• Doesn’t play nicely with gradient-based optimization of NNs

Natural inputs Abstract inputs Abstract outputs

Slide by Veličković

Algorithmic bottleneck
Second (more fundamental) issue: data efficiency
• Real-world data is often incredibly rich
• We still have to compress it down to scalar values

The algorithmic solver commits to using this scalar
Assumes it is perfect!

If there’s insufficient training data to estimate the scalars:
• Alg will give a perfect solution
• …but in a suboptimal environment

Slide by Veličković

Neural algorithmic pipeline

Output 𝒚(9)Input 𝒙(!)

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20; Figure by Cappart et al.

Encoder network 𝒇
• E.g., makes sure input is in correct dimension for next step

Neural algorithmic pipeline

Output 𝒚(9)Input 𝒙(!)

Processor network 𝑷
• Graph neural network
• Run multiple times (termination determined by a NN)

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20; Figure by Cappart et al.

Neural algorithmic pipeline

Output 𝒚(9)Input 𝒙(!)

Decoder network 𝒈
• Transform’s GNNs output into algorithmic output

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20; Figure by Cappart et al.

Neural algorithmic pipeline

1. On abstract inputs, learn encode-process-decode functions

Abstract outputs
�𝑦 ≈ 𝑔 𝑃 𝑓 𝑥Abstract inputs �̅�

Figure by Cappart et al.

Neural algorithmic pipeline

Abstract outputs
�𝑦 ≈ 𝑔 𝑃 𝑓 𝑥Abstract inputs �̅�

After training on abstract inputs, processor 𝑃:
1. Is aligned with computations of target algorithm
2. Admits useful gradients
3. Operates over high-dim latent space (better use of data)

Figure by Cappart et al.

Neural algorithmic pipeline

2. Set up encode-decode functions for natural inputs/outputs

Abstract inputs �̅�
Abstract outputs
�𝑦 ≈ 𝑔 𝑃 𝑓 𝑥

Natural outputs 𝑦Natural inputs 𝑥

Figure by Cappart et al.

Neural algorithmic pipeline

3. Learn parameters using loss that compares ¹𝑔 𝑃 º𝑓 𝑥 to 𝑦

Abstract inputs �̅�
Abstract outputs
�𝑦 ≈ 𝑔 𝑃 𝑓 𝑥

Natural outputs 𝑦Natural inputs 𝑥

Figure by Cappart et al.

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment

i. Example algorithms
ii. Experiments
iii. Additional motivation
iv. Additional research

3. Integer programming with GNNs

Additional research

Lots of research in the past few years! E.g.:

• How to achieve algorithmic alignment & theory guarantees
• Xu et al., ICLR’20; Dudzik, Veličković, NeurIPS’22

• CLRS benchmark
• Sorting, searching, dynamic programming, graph algorithms, etc.
• Veličković et al. ICML’22; Ibarz et al. LoG’22; Bevilacqua et al. ICML’23

• Primal-dual algorithms
• Numeroso et al., ICLR’23

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs

Gasse, Chételat, Ferroni, Charlin, Lodi; NeurIPS’19

Variable selection policy (VSP)
𝑥! = 0

𝑥# = 0 𝑥# = 1

Better branching order than 𝑥!, 𝑥", 𝑥#, 𝑥]?

𝑥$ = 0

𝑥2 = 0

𝑥$ = 1

Variable selection policy (VSP)
𝑥2 = 0

𝑥$ = 0 𝑥$ = 1

Better branching order than 𝑥!, 𝑥", 𝑥#, 𝑥]? E.g., 𝑥], 𝑥#, 𝑥!, 𝑥"

𝑥! = 0

𝑥# = 0

𝑥! = 1

Variable selection policy (VSP)

Chooses variables to branch on on-the-fly
Rather than pre-defined order

𝑥2 = 0

𝑥$ = 0 𝑥$ = 1

𝑥! = 0

𝑥# = 0

𝑥! = 1

Variable selection policy (VSP)
At node 𝑗 with LP objective value 𝑧(𝑗):
• Let 𝑧(=(𝑗) be the LP objective value after setting 𝑥(= 1
• Let 𝑧(\(𝑗) be the LP objective value after setting 𝑥(= 0

VSP example:
Branch on the variable 𝑥(that maximizes

max 𝑧 𝑗 − 𝑧(= 𝑗 , 10_ ⋅ max 𝑧 𝑗 − 𝑧(\ 𝑗 , 10_

If score was 𝑧 𝑗 − 𝑧(= 𝑗 𝑧 𝑗 − 𝑧(\ 𝑗 and 𝑧 𝑗 − 𝑧(= 𝑗 = 0:
would lose information stored in 𝑧 𝑗 − 𝑧(\ 𝑗

Strong branching

Challenge: Computing 𝑧(\ 𝑗 , 𝑧(=(𝑗) requires solving a lot of LPs
• Computing all LP relaxations referred to as strong-branching
• Very time intensive

Pro: Strong branching leads to small search trees

Idea: Train an ML model to imitate strong-branching
Khalil et al. [AAAI’16], Alvarez et al. [INFORMS JoC’17], Hansknecht et al. [arXiv’18]
This paper: using a GNN

Gasse et al.; NeurIPS’19

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs

i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

Problem formulation

Goal: learn a policy 𝜋 𝑎P 𝑠P

Approach (imitation learning):
• Run strong branching on training set of instances
• Collect dataset of (state, variable) pairs 𝑆 = 𝑠(, 𝑎(∗ ()!

'

• Learn policy 𝜋𝜽 with training set 𝑆

Probability of branching on variable 𝑎5 when solver is in state 𝑠5

Gasse et al.; NeurIPS’19

State encoding
State 𝑠P of B&B encoded as a bipartite graph

with node and edge features

max 9𝑥! + 5𝑥" + 6𝑥# + 4𝑥]
s.t. 6𝑥! + 3𝑥" + 5𝑥# + 2𝑥] ≤ 10 𝑐!
 𝑥# + 𝑥] ≤ 10 𝑐"
 −𝑥! + 𝑥# ≤ 0 𝑐#
 −𝑥" + 𝑥] ≤ 0 𝑐]
 𝑥!, 𝑥", 𝑥#, 𝑥] ∈ 0,1

𝑐!

Constraints Variables

𝑐#

𝑐$

𝑐2

𝑥!

𝑥#

𝑥$

𝑥2

Gasse et al.; NeurIPS’19

State encoding
State 𝑠P of B&B encoded as a bipartite graph

with node and edge features

• Edge feature: constraint coefficient
• Example node features:
• Constraints:

• Cosine similarity with objective
• Tight in LP solution?

• Variables:
• Objective coefficient
• Solution value equals upper/lower bound?

𝑐!

Constraints Variables

𝑐#

𝑐$

𝑐2

𝑥!

𝑥#

𝑥$

𝑥2

Gasse et al.; NeurIPS’19

GNN structure

1. Pass from variables → constraints
𝒄(← 𝑓n 𝒄(, 7

F: (,F ∈l

𝑔n 𝒄(, 𝒗F , 𝒆(F

𝑐!

Constraints Variables

𝑐#

𝑐$

𝑐2

𝑥!

𝑥#

𝑥$

𝑥2

Constraint
features

2-layer MLP with relu
activations

Variable
features

Edge
features

Gasse et al.; NeurIPS’19

GNN structure

1. Pass from variables → constraints
𝒄(← 𝑓n 𝒄(, 7

F: (,F ∈l

𝑔n 𝒄(, 𝒗F , 𝒆(F

2. Pass from constraints → variables
𝒗F ← 𝑓p 𝒗F , 7

(: (,F ∈l

𝑔p 𝒄(, 𝒗F , 𝒆(F
𝑐!

Constraints Variables

𝑐#

𝑐$

𝑐2

𝑥!

𝑥#

𝑥$

𝑥2

Gasse et al.; NeurIPS’19

GNN structure

3. Compute distribution over variables

𝑐!

Constraints Variables

𝑐#

𝑐$

𝑐2

𝑥!

𝑥#

𝑥$

𝑥2

2-layer MLP
+ softmax

𝜋 𝑥! 𝑠5

𝜋 𝑥2 𝑠5

𝜋 𝑥# 𝑠5

𝜋 𝑥$ 𝑠5

Gasse et al.; NeurIPS’19

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs

i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

Reliability pseudo-cost branching (RPB)

Rough idea:
• Goal: estimate 𝑧 𝑗 − 𝑧(= 𝑗 w/o solving the LP with 𝑥(= 1
• Estimate = avg change after setting 𝑥(= 1 elsewhere in tree

This is the “pseudo-cost”
• “Reliability”: do strong branching if estimate is “unreliable”

E.g., early in the tree

Default branching rule of SCIP (leading open-source solver):
max ÆΔ(= 𝑗 , 10_ ⋅ max ÆΔ(\ 𝑗 , 10_

Estimate of 𝑧 𝑗 − 𝑧.> 𝑗 Estimate of 𝑧 𝑗 − 𝑧.? 𝑗

Achterberg and Berthold, CPAIOR’09

Learning to rank approaches

• Predict which variable strong branching would rank highest
• Using a linear model instead of a GNN

• Khalil et al. [AAAI’16]:
Use learning-to-rank algorithm SVMrank [Joachims, KDD’06]

• Hansknecht et al. [arXiv’18]
Use learning-to-rank alg lambdaMART [Burges, Learning’10]

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs

i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

Set covering instances

Always train on “easy” instances

1000 columns, 500 rows 1000 columns, 2000 rows

Gasse et al.; NeurIPS’19

Set covering instances

Runtime in seconds with a timeout of 1 hour

Number instances with fastest runtime / number solved

Size of B&B tree

Gasse et al.; NeurIPS’19

Set covering instances

• GNN is faster than SCIP default VSP (RPB)
• Performance generalizes to larger instances
• Similar results for auction design & facility location problems

Gasse et al.; NeurIPS’19

Max independent set instances

RPB is catching up to GNN on MIS instances

Gasse et al.; NeurIPS’19

Outline (applied techniques)

1. GNNs overview
2. Neural algorithmic alignment
3. Integer programming with GNNs

i. Machine learning formulation
ii. Baselines
iii. Experiments
iv. Additional research

Additional research

CPU-friendly approaches
Gupta et al., NeurIPS’20

Bipartite representation inspired many follow-ups
Nair et al., ‘20; Sonnerat et al., ‘21; Wu et al., NeurIPS’21; Huang et al. ICML’23; …

Survey on Combinatorial Optimization & Reasoning w/ GNNs:
Cappart, Chételat, Khalil, Lodi, Morris, Veličković, JMLR’23

Conclusions and future directions

Overview

Theoretical guarantees
a. Statistical guarantees for algorithm configuration

i. Broadly applicable theory for deriving generalization guarantees
ii. Proved using connections between primal and dual classes

b. Online algorithm configuration
a. Impossible in the worst cases
b. Introduced dispersion to provide no-regret guarantees

1

Overview

Theoretical guarantees
a. Statistical guarantees for algorithm configuration
b. Online algorithm configuration

Applied techniques: Graph neural networks
a. Neural algorithmic alignment
b. GNNs for variable selection in branch-and-bound

1

2

Future work: Tighter statistical bounds

WHP ∀𝝆, |avg utility over training set – exp utility|	≤ 𝜖
given training set of size Z𝑂 !

9#
Pdim 𝒢∗ + VCdim ℱ∗ log 𝑘

𝑓 ∈ ℱ

𝑔 ∈ 𝒢
𝑢'∗ 𝝆

Number of boundary functions

𝑘 is often exponential
Can lead to large bounds

I expect this can sometimes be avoided!
Would require more information about duals

Future work: Knowledge transfer

• Training a GNN to solve multiple related problems…
can sometimes lead to better single-task performance

• E.g., training reachability and shortest-paths (grey line)
v.s. just training shortest-paths (yellow line)

0

0.5

1

20 nodes 50 nodes 100 nodes

Shortest-paths
accuracy

Max aggregator
Max aggregator (no-reach)

Veličković, Ying, Padovano, Hadsell, Blundell, ICLR’20

Future work: Knowledge transfer

• Training a GNN to solve multiple related problems…
can sometimes lead to better single-task performance

• Can we understand theoretically why this happens?
• For which sets of algorithms can we expect knowledge transfer?

Future work: Size generalization
Machine-learned algorithms can scale to larger instances

Applied research: Dai et al., NeurIPS’17; Veličković, et al., ICLR’20; …
Goal: eventually, solve problems no one’s ever been able to solve

However, size generalization is not immediate! It depends on:
• The machine-learned algorithm

Is the algorithm scale sensitive?

Example [Xu et al., ICLR’21]:
• Algorithms represents by GNNs do generalize
• Algs represented by MLPs don’t generalize across size

Future work: Size generalization
Machine-learned algorithms can scale to larger instances

Applied research: Dai et al., NeurIPS’17; Veličković, et al., ICLR’20; …
Goal: eventually, solve problems no one’s ever been able to solve

However, size generalization is not immediate! It depends on:
• The machine-learned algorithm

Is the algorithm scale sensitive?
• The problem instances

As size scales, what features must be preserved?

Future work: Size generalization

Can you:
1. Shrink a set of big integer programs

2. Learn a good algorithm on the small instances
3. Apply what you learned to the big instances?

graphs
…

Future work: ML as a toolkit for theory

E.g., Dai et al. [NeurIPS’17] write that their RL alg discovered:
“New and interesting” greedy strategies for MAXCUT and MVC
“which intuitively make sense but have not been analyzed before,”
thus could be a “good assistive tool for discovering new algorithms.”

Data-driven
algorithm design

Which algorithm classes to optimize over?

Q: Why are some machine-learned algs so dominant?

Classical algorithm
design & analysis

Additional slides

Outline (additional applied techniques)

1. Reinforcement learning overview
2. Learning greedy heuristics with RL

Learner interaction with environment

Learner

Environment

Action 𝑎Reward 𝑟State 𝑠

Slide by Kolter

Markov decision processes

𝑆: set of states (assumed for now to be discrete)

𝐴: set of actions

Transition probability distribution 𝑃(𝑠′ ∣ 𝑠, 𝑎)
Probability of entering state 𝑠′ from state 𝑠 after taking action 𝑎

Reward function 𝑅: 𝑆 → ℝ

Goal: Policy 𝜋: 𝑆 → 𝐴 that maximizes total (discounted) reward

Slide by Kolter

Policies and value functions

Policy is a mapping from states to actions 𝜋: 𝑆 → 𝐴

Value function for a policy:
Expected sum of discounted rewards

𝑉q 𝑠 = 𝔼 7
P)R

r

𝛾P𝑅 𝑠P ∣ 𝑠R = 𝑠, 𝑎P = 𝜋 𝑠P , 𝑠P=!|𝑠P , 𝑎P ∼ 𝑃

Discount factor

Slide by Kolter

Optimal policy and value function

Optimal policy 𝜋⋆	achieves the highest value for every state
𝑉q⋆(𝑠) = max

q
𝑉q 𝑠

Value function is written 𝑉⋆ = 𝑉q⋆

Several different ways to find 𝜋⋆
• Value iteration
• Policy iteration

Slide by Kolter

Challenge of RL

MDP (𝑺, 𝑨, 𝑷, 𝑹):
• 𝑆: set of states (assumed for now to be discrete)
• 𝐴: set of actions
• Transition probability distribution 𝑃(𝑠P=! ∣ 𝑠P , 𝑎P)
• Reward function 𝑅: 𝑆 → ℝ

RL twist: We don’t know 𝑃 or 𝑅, or too big to enumerate

Slide by Kolter

Q-learning

Q functions:
Like value functions but defined over state-action pairs

𝑄q 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 7
d3∈t

𝑃 𝑠$ 𝑠, 𝑎 𝑄q 𝑠$, 𝜋 𝑠$ 	

I.e., Q function is the value of:
1. Starting in state 𝑠
2. Taking action 𝑎
3. Then acting according to 𝜋

Slide by Kolter

Q-learning

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 7
d3∈t

𝑃 𝑠$ 𝑠, 𝑎 max
u3

𝑄⋆ 𝑠′, 𝑎′ 	

= 𝑅 𝑠 + 𝛾 7
d3∈t

𝑃 𝑠$ 𝑠, 𝑎 𝑉⋆ 𝑠$

𝑄⋆ is the value of:
1. Starting in state 𝑠
2. Taking action 𝑎
3. Then acting optimally

Slide by Kolter

Q-learning

(High-level) Q-learning algorithm
initialize Ð𝑄 𝑠, 𝑎 ← 0, ∀𝑠, 𝑎
repeat

Observe current state 𝑠 and reward 𝑟
Take action 𝑎 = argmax Ð𝑄 𝑠,⋅ and observe next state 𝑠$

 Improve estimate Ð𝑄 based on 𝑠, 𝑟, 𝑎, 𝑠$

Can use function approximation to represent Ð𝑄 compactly
n𝑄 𝑠, 𝑎 = 𝑓�(𝑠, 𝑎)

Outline (additional applied techniques)

1. Reinforcement learning overview
2. Learning greedy heuristics with RL

Dai, Khalil, Zhang, Dilkina, Song; NeurIPS’17

RL for combinatorial optimization

Tons of research in this area

This section: Example of a pioneering work in this space

Travelling salesman
Bello et al., ICLR‘17; Dai et al., NeurIPS’17;
Nazari et al., NeurIPS’18; …

Maximum cut
Dai et al., NeurIPS’17; Cappart et al.,
AAAI‘19; Barrett et al., AAAI’20; …

Bin packing
Hu et al., ‘17; Laterre et al., ‘18; Cai et al.,
DRL4KDD‘19; Li et al., ’20; …

Minimum vertex cover
Dai et al., NeurIPS’17; Song et al., UAI‘19; …

Overview

Goal: use RL to learn new greedy strategies for graph problems
Feasible solution constructed by successively adding nodes to solution

Input: Graph 𝐺 = 𝑉, 𝐸 , weights 𝑤 𝑢, 𝑣 for 𝑢, 𝑣 ∈ 𝐸

RL state representation: Graph embedding

Dai, Khalil, et al.; NeurIPS’17

Outline (additional applied techniques)

1. Reinforcement learning overview
2. Learning greedy heuristics with RL

i. Examples: Min vertex cover and max cut
ii. RL formulation
iii. Experiments

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum

Degree
sum: 6

Degree
sum: 7

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

Maximum cut

Find partition 𝑆, 𝑉 ∖ 𝑆 of nodes that maximizes
7
g,K ∈n

𝑤 𝑢, 𝑣

where 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆

If 𝑤 𝑢, 𝑣 = 1 for all 𝑢, 𝑣 ∈ 𝐸:

j
<,= ∈A

𝑤 𝑢, 𝑣 = 5

Maximum cut

Find partition 𝑆, 𝑉 ∖ 𝑆 of nodes that maximizes
7
g,K ∈n

𝑤 𝑢, 𝑣

where 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆

Greedy: move node from one side of cut to the other
Move node that results in the largest improvement in cut weight

Maximum cut

Find partition 𝑆, 𝑉 ∖ 𝑆 of nodes that maximizes
7
g,K ∈n

𝑤 𝑢, 𝑣

where 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆

Greedy: move node from one side of cut to the other
Move node that results in the largest improvement in cut weight

Scoring function that guides greedy algorithm

Outline (additional applied techniques)

1. Reinforcement learning overview
2. Learning greedy heuristics with RL

i. Example: Min vertex cover and max cut
ii. RL formulation
iii. Experiments

Reinforcement learning formulation
State:
• Goal: encode partial solution 𝑆 = 𝑣!, 𝑣", … , 𝑣 t , 𝑣(∈ 𝑉
• Use GNN to compute graph embedding 𝝁

Initial node features 𝑥K = ¯1 if	𝑣 ∈ 𝑆
0 else	

Action: Choose vertex 𝑣 ∈ 𝑉 ∖ 𝑆 to add to solution

Transition (deterministic): For chosen 𝑣 ∈ 𝑉 ∖ 𝑆, set 𝑥K = 1

Dai, Khalil, et al.; NeurIPS’17

E.g., nodes in independent set, nodes on one side of cut

Reinforcement learning formulation
State:
• Goal: encode partial solution 𝑆 = 𝑣!, 𝑣", … , 𝑣 t , 𝑣(∈ 𝑉
• Use GNN to compute graph embedding 𝝁

Initial node features 𝑥K = ¯1 if	𝑣 ∈ 𝑆
0 else	

Action: Choose vertex 𝑣 ∈ 𝑉 ∖ 𝑆 to add to solution

Transition (deterministic): For chosen 𝑣 ∈ 𝑉 ∖ 𝑆, set 𝑥K = 1

Dai, Khalil, et al.; NeurIPS’17

Reinforcement learning formulation

Reward: 𝑟 𝑆, 𝑣 is change in objective when transition 𝑆 → (𝑆, 𝑣)

Policy (deterministic): 𝜋(𝑣|𝑆) = Ö
1 if	𝑣 = argmax

K3∉t
Ð𝑄 𝝁, 𝑣$

0 else	

Dai, Khalil, et al.; NeurIPS’17

Outline (additional applied techniques)

1. Reinforcement learning overview
2. Learning greedy heuristics with RL

i. Example: Min vertex cover and max cut
ii. RL formulation
iii. Experiments

Min vertex cover

Paper’s approach

2-approximation
algorithm

Greedy algorithm
from first few slides

Barabasi-Albert
random graphs

Another DL approach
[Bello et al., arXiv’16]

Dai, Khalil, et al.; NeurIPS’17

Max cut

Paper’s approach

Another DL approach
[Bello et al., arXiv’16]

Goemans-Williamson
algorithm

Greedy algorithm
from first few slides

Barabasi-Albert
random graphs

Dai, Khalil, et al.; NeurIPS’17

TSP

Paper’s approach

Uniform random points on 2-D grid

• Initial subtour: 2 cities that are
farthest apart

• Repeat the following:
• Choose city that’s farthest

from any city in the
subtour

• Insert in position where it
causes the smallest
distance increase

[Rosenkrantz et al., SIAM JoC’77]

Dai, Khalil, et al.; NeurIPS’17

Runtime comparisons

CPLEX-1st: 1st feasible
solution found by CPLEX

Dai, Khalil, et al.; NeurIPS’17

Min vertex cover visualization

Nodes seem to be selected to balance between:
• Degree
• Connectivity of the remaining graph

Dai, Khalil, et al.; NeurIPS’17

