publications

2024

  1. From Large to Small Datasets: Size Generalization for Clustering Algorithm Selection
    Vaggos Chatziafratis, Ishani Karmarkar, and Ellen Vitercik
    2024
  2. MAGNOLIA: Matching Algorithms via GNNs for Online Value-to-go Approximation
    Alexandre Hayderi, Amin Saberi, Ellen Vitercik, and Anders Wikum
    In International Conference on Machine Learning (ICML) , 2024
  3. Bandit Profit-maximization for Targeted Marketing
    Joon Suk Huh, Ellen Vitercik, and Kirthevasan Kandasamy
    In ACM Conference on Economics and Computation (EC) , 2024
  4. Learning to Branch: Generalization Guarantees and Limits of Data-Independent Discretization
    Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik
    Journal of the ACM. Supersedes the ICML’18 paper below , 2024
  5. New Sequence-Independent Lifting Techniques for Cutting Planes and When They Induce Facets
    Siddharth Prasad, Ellen Vitercik, Maria-Florina Balcan, and Tuomas Sandholm
    Preliminary version: poster at the Mixed Integer Programming Workshop (MIP) , 2024
  6. How Much Data Is Sufficient to Learn High-performing Algorithms?
    Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen Vitercik
    Journal of the ACM. To appear. Supersedes the STOC’21 paper below , 2024

2023

  1. Generalization Guarantees for Multi-item Profit Maximization: Pricing, Auctions, and Randomized Mechanisms
    Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik
    Operations Research. To appear. Supersedes the EC’18 paper below , 2023
  2. Leveraging Reviews: Learning to Price with Buyer and Seller Uncertainty
    Wenshuo Guo, Nika Haghtalab, Kirthevasan Kandasamy, and Ellen Vitercik
    In ACM Conference on Economics and Computation (EC) , 2023
  3. Disincentivizing Polarization in Social Networks
    Christian Borgs, Jennifer Chayes, Christian Ikeokwu, and Ellen Vitercik
    In ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO) , 2023

2022

  1. Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts
    Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik
    In Conference on Neural Information Processing Systems (NeurIPS) , 2022
  2. No-Regret Learning in Partially-Informed Auctions
    Wenshuo Guo, Michael Jordan, and Ellen Vitercik
    In International Conference on Machine Learning (ICML) , 2022
  3. Improved Sample Complexity Bounds for Branch-and-Cut
    Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik
    In International Conference on Principles and Practice of Constraint Programming , 2022

2021

  1. Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond
    Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik
    In Conference on Neural Information Processing Systems (NeurIPS) , 2021
  2. Revenue Maximization via Machine Learning with Noisy Data
    Ellen Vitercik, and Tom Yan
    In Conference on Neural Information Processing Systems (NeurIPS) , 2021
  3. How Much Data Is Sufficient to Learn High-performing Algorithms? Generalization Guarantees for Data-driven Algorithm Design
    Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen Vitercik
    In Proceedings of the Annual Symposium on Theory of Computing (STOC) , 2021
  4. Private Optimization Without Constraint Violations
    Andrés Muñoz Medina, Umar Syed, Sergei Vassilvitskii, and Ellen Vitercik
    In International Conference on Artificial Intelligence and Statistics (AISTATS) , 2021
  5. Generalization in Portfolio-based Algorithm Selection
    Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik
    In AAAI Conference on Artificial Intelligence , 2021

2020

  1. Refined Bounds for Algorithm Configuration: The Knife-edge of Dual Class Approximability
    Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik
    In International Conference on Machine Learning (ICML) , 2020
  2. Learning to Optimize Computational Resources: Frugal Training with Generalization Guarantees
    Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik
    In AAAI Conference on Artificial Intelligence , 2020

2019

  1. Estimating Approximate Incentive Compatibility
    Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik
    In ACM Conference on Economics and Computation (EC) , 2019
  2. Learning to Prune: Speeding up Repeated Computations
    Daniel Alabi, Adam Tauman Kalai, Katrina Ligett, Cameron Musco, Christos Tzamos, and Ellen Vitercik
    In Conference on Learning Theory (COLT) , 2019
  3. Algorithmic Greenlining: An Approach to Increase Diversity
    Christian Borgs, Jennifer Chayes, Nika Haghtalab, Adam Tauman Kalai, and Ellen Vitercik
    In AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (AIES) , 2019

2018

  1. Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization
    Maria-Florina Balcan, Travis Dick, and Ellen Vitercik
    In Symposium on Foundations of Computer Science (FOCS) , 2018
  2. Learning to Branch
    Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik
    In International Conference on Machine Learning (ICML) , 2018
  3. A General Theory of Sample Complexity for Multi-Item Profit Maximization
    Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik
    In ACM Conference on Economics and Computation (EC) , 2018
  4. Synchronization Strings: Channel Simulations and Interactive Coding for Insertions and Deletions
    Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik
    In International Colloquium on Automata, Languages and Programming (ICALP) , 2018

2017

  1. Learning-Theoretic Foundations of Algorithm Configuration for Combinatorial Partitioning Problems
    Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White
    In Conference on Learning Theory (COLT) , 2017

2016

  1. Sample Complexity of Automated Mechanism Design
    Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik
    In Conference on Neural Information Processing Systems (NeurIPS) , 2016
  2. Learning Combinatorial Functions from Pairwise Comparisons
    Maria-Florina Balcan, Ellen Vitercik, and Colin White
    In Conference on Learning Theory (COLT) , 2016